中文版 | English
题名

Hydrogen-prompted heterogeneous development of dislocation structure in Ni

作者
通讯作者Sun, Qingqing; Wang, Shuai
发表日期
2023-03-01
DOI
发表期刊
ISSN
1359-6454
EISSN
1873-2453
卷号246
摘要
First documented in 1875, the deterioration of mechanical properties of hydrogen-containing metals is a long-standing yet unsolved problem in materials science. In this work, the evolution of dislocation structures in differently orientated grains (i.e., near [100], [110], and [111]) of the uncharged and hydrogen-charged (400 and 1200 ppm) polycrystalline Ni were systematically investigated by combining electron backscatter diffrac-tion, focused ion beam and scanning transmission electron microscopy. By using site-specific characterization methods, for the first time, we discover that hydrogen-enhanced localized plasticity (HELP) is orientation-dependent, with the following sequence: [100] > [111] > [110]. Massive incompatibility between differently orientated grains, induced by the orientation dependence of HELP, contributes to the premature intergranular fracture of Ni, especially for the 400 ppm H-charged Ni. Our results suggest that optimizing orientation distri-bution is a potential approach for enhancing metals' resistance to hydrogen damage. The relative contribution of HELP and hydrogen-enhanced decohesion (HEDE) mechanisms in hydrogen embrittlement of Ni is also analyzed quantitatively for 400 and 1200 ppm H-charged samples. In the 400 ppm H-charged Ni, a strong synergistic interaction exists between HELP and HEDE mechanisms, and the HELP mechanism plays a critical role in pre-mature fracture. By contrast, in the 1200 ppm H-charged Ni, the HELP effect on final failure is much less sig-nificant and HEDE is the dominant embrittlement mechanism.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key R & D Program of China[2022YFB4600700] ; Key-Area Project of the Guangdong Province Department of Education[2022ZDZX3021] ; Shenzhen Science and Technology Innovation Commission[JCYJ20210324104414040] ; National Natural Science Foundation of China[52101115] ; Song- shan Lake Materials Laboratory Open Project Foundation[2021SLABFN13]
WOS研究方向
Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目
Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号
WOS:000921587900001
出版者
EI入藏号
20230213360842
EI主题词
High resolution transmission electron microscopy ; Hydrogen embrittlement ; Ion beams ; Plasticity ; Scanning electron microscopy ; Textures
EI分类号
Metallurgy:531.1 ; Optical Devices and Systems:741.3 ; Chemical Products Generally:804 ; High Energy Physics:932.1 ; Materials Science:951
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85145664700
来源库
Web of Science
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/431003
专题工学院_机械与能源工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
2.Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Guangdong, Peoples R China
3.Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, 744 Moto Oka,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
4.Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Anhui, Peoples R China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Sun, Qingqing,He, Jing,Nagao, Akihide,et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni[J]. ACTA MATERIALIA,2023,246.
APA
Sun, Qingqing,He, Jing,Nagao, Akihide,Ni, Yong,&Wang, Shuai.(2023).Hydrogen-prompted heterogeneous development of dislocation structure in Ni.ACTA MATERIALIA,246.
MLA
Sun, Qingqing,et al."Hydrogen-prompted heterogeneous development of dislocation structure in Ni".ACTA MATERIALIA 246(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Qingqing]的文章
[He, Jing]的文章
[Nagao, Akihide]的文章
百度学术
百度学术中相似的文章
[Sun, Qingqing]的文章
[He, Jing]的文章
[Nagao, Akihide]的文章
必应学术
必应学术中相似的文章
[Sun, Qingqing]的文章
[He, Jing]的文章
[Nagao, Akihide]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。