中文版 | English
题名

Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method

作者
通讯作者Geng, Shaojuan
发表日期
2023
DOI
发表期刊
ISSN
1003-2169
EISSN
1993-033X
卷号32期号:2页码:739-752
摘要
In this paper, a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor. An in-house design optimization platform, based on genetic algorithm and back propagation neural network surrogate model, is constructed to perform the optimization. The optimization parameters include diffusion angle of meridian passage, diffusion length of meridian passage, change of blade camber angle and blade number. The impacts of these design parameters on efficiency and stability improvement are analyzed based on the optimization database. Two optimized diffuser passage compressor designs are selected from the optimization solution set by comprehensively considering efficiency and stability of the rotor, and the influencing mechanisms on efficiency and stability are further studied. The simulation results show that the application of diffuser passage compressor design can improve the load coefficient by 12.1% and efficiency by 1.28% at the design mass flow rate condition, and the stall margin can be improved by 12.5%. According to the local entropy generation model analysis, despite the upper and lower endwall loss of the diffuser passage rotor are increased, the profile loss is reduced compared with the original rotor. The efficiency of the diffuser passage rotor can be influenced by both loss and load. At the near stall condition, decreasing flow blockage at blade root region can improve the stall margin of the diffuser passage rotor.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Science and Technology Major Project[2017-II-0006-0020]
WOS研究方向
Thermodynamics ; Engineering
WOS类目
Thermodynamics ; Engineering, Mechanical
WOS记录号
WOS:000919031700004
出版者
EI入藏号
20230413430066
EI主题词
Compressors ; Entropy ; Genetic algorithms ; Neural networks ; Torsional stress
EI分类号
Compressors:618.1 ; Thermodynamics:641.1 ; Production Engineering:913.1
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/431011
专题工学院_力学与航空航天工程系
作者单位
1.Chinese Acad Sci, Inst Engn Thermophys, Adv Gas Turbine Lab, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Innovat Acad Light duty Gas Turbine, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Engn Thermophys, Key Lab Adv Energy & Power, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Jin, Yun,Geng, Shaojuan,Liu, Shuaipeng,et al. Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method[J]. Journal of Thermal Science,2023,32(2):739-752.
APA
Jin, Yun,Geng, Shaojuan,Liu, Shuaipeng,Ni, Ming,&Zhang, Hongwu.(2023).Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method.Journal of Thermal Science,32(2),739-752.
MLA
Jin, Yun,et al."Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method".Journal of Thermal Science 32.2(2023):739-752.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jin, Yun]的文章
[Geng, Shaojuan]的文章
[Liu, Shuaipeng]的文章
百度学术
百度学术中相似的文章
[Jin, Yun]的文章
[Geng, Shaojuan]的文章
[Liu, Shuaipeng]的文章
必应学术
必应学术中相似的文章
[Jin, Yun]的文章
[Geng, Shaojuan]的文章
[Liu, Shuaipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。