中文版 | English
题名

A model-based gait recognition method with body pose and human prior knowledge

作者
通讯作者Yu,Shiqi
发表日期
2020-02-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号98
摘要
We propose in this paper a novel model-based gait recognition method, PoseGait. Gait recognition is a challenging and attractive task in biometrics. Early approaches to gait recognition were mainly appearance-based. The appearance-based features are usually extracted from human body silhouettes, which are easy to compute and have shown to be efficient for recognition tasks. Nevertheless silhouettes shape is not invariant to changes in clothing, and can be subject to drastic variations, due to illumination changes or other external factors. An alternative to silhouette-based features are model-based features. However, they are very challenging to acquire especially for low image resolution. In contrast to previous approaches, our model PoseGait exploits human 3D pose estimated from images by Convolutional Neural Network as the input feature for gait recognition. The 3D pose, defined by the 3D coordinates of joints of the human body, is invariant to view changes and other external factors of variation. We design spatio-temporal features from the 3D pose to improve the recognition rate. Our method is evaluated on two large datasets, CASIA B and CASIA E. The experimental results show that the proposed method can achieve state-of-the-art performance and is robust to view and clothing variations.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
ESI高被引
学校署名
通讯
资助项目
Science Foundation of Shenzhen[20170504160426188]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000497600300005
出版者
EI入藏号
20194007493197
EI主题词
Gait analysis ; Hosiery manufacture ; Image resolution ; Large dataset ; Neural networks
EI分类号
Biomechanics, Bionics and Biomimetics:461.3 ; Textile Products and Processing:819.5
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85072769994
来源库
Scopus
引用统计
被引频次[WOS]:249
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43714
专题工学院_计算机科学与工程系
作者单位
1.College of Computer Science and Software EngineeringShenzhen University,China
2.Department of Computer Science and EngineeringSouthern University of Science and Technology,China
3.Shenzhen Institute of Artificial Intelligence and Robotics for Society,Shenzhen,China
4.National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of Sciences,China
5.Watrix technology limited co. ltd,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Liao,Rijun,Yu,Shiqi,An,Weizhi,et al. A model-based gait recognition method with body pose and human prior knowledge[J]. PATTERN RECOGNITION,2020,98.
APA
Liao,Rijun,Yu,Shiqi,An,Weizhi,&Huang,Yongzhen.(2020).A model-based gait recognition method with body pose and human prior knowledge.PATTERN RECOGNITION,98.
MLA
Liao,Rijun,et al."A model-based gait recognition method with body pose and human prior knowledge".PATTERN RECOGNITION 98(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Liao-2020-A model-ba(2545KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liao,Rijun]的文章
[Yu,Shiqi]的文章
[An,Weizhi]的文章
百度学术
百度学术中相似的文章
[Liao,Rijun]的文章
[Yu,Shiqi]的文章
[An,Weizhi]的文章
必应学术
必应学术中相似的文章
[Liao,Rijun]的文章
[Yu,Shiqi]的文章
[An,Weizhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。