中文版 | English
题名

Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations

作者
通讯作者Cheng,Ran
发表日期
2020
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号509页码:457-469
摘要
Despite the recent development in evolutionary multi- and many-objective optimization, the problems with large-scale decision variables still remain challenging. In this work, we propose a scalable small subpopulations based covariance matrix adaptation evolution strategy, namely S-CMA-ES, for solving many-objective optimization problems with large-scale decision variables. The proposed S-CMA-ES attempts to approximate the set of Pareto-optimal solutions using a series of small subpopulations instead of a whole population, where each subpopulation converges to only one solution. In the proposed S-CMA-ES, a diversity improvement strategy is designed to generate and select new solutions. The performance of S-CMA-ES is compared with five representative algorithms on 36 test instances with 5–15 objectives and 500–1500 decision variables. The empirical results demonstrate the superiority of the proposed S-CMA-ES.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Shenzhen Peacock Plan[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000494883700029
出版者
EI入藏号
20184205959358
EI主题词
Decision making ; Evolutionary algorithms ; Multiobjective optimization ; Pareto principle
EI分类号
Management:912.2 ; Mathematics:921 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85054820433
来源库
Scopus
引用统计
被引频次[WOS]:119
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43745
专题工学院_计算机科学与工程系
作者单位
1.College of Systems EngineeringNational University of Defense Technology,Changsha,410073,China
2.Shenzhen Key Laboratory of Computational IntelligenceUniversity Key Laboratory of Evolving Intelligent Systems of Guangdong ProvinceDepartment of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,518055,China
3.College of Information Science and TechnologyJinan University,Guangzhou,510632,China
4.School of Geosciences and Info-PhysicsCentral South University,Changsha,410004,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Huangke,Cheng,Ran,Wen,Jinming,et al. Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations[J]. INFORMATION SCIENCES,2020,509:457-469.
APA
Chen,Huangke,Cheng,Ran,Wen,Jinming,Li,Haifeng,&Weng,Jian.(2020).Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations.INFORMATION SCIENCES,509,457-469.
MLA
Chen,Huangke,et al."Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations".INFORMATION SCIENCES 509(2020):457-469.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Chen-2020-Solving la(1090KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Huangke]的文章
[Cheng,Ran]的文章
[Wen,Jinming]的文章
百度学术
百度学术中相似的文章
[Chen,Huangke]的文章
[Cheng,Ran]的文章
[Wen,Jinming]的文章
必应学术
必应学术中相似的文章
[Chen,Huangke]的文章
[Cheng,Ran]的文章
[Wen,Jinming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。