题名 | Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations |
作者 | |
通讯作者 | Cheng,Ran |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 0020-0255
|
EISSN | 1872-6291
|
卷号 | 509页码:457-469 |
摘要 | Despite the recent development in evolutionary multi- and many-objective optimization, the problems with large-scale decision variables still remain challenging. In this work, we propose a scalable small subpopulations based covariance matrix adaptation evolution strategy, namely S-CMA-ES, for solving many-objective optimization problems with large-scale decision variables. The proposed S-CMA-ES attempts to approximate the set of Pareto-optimal solutions using a series of small subpopulations instead of a whole population, where each subpopulation converges to only one solution. In the proposed S-CMA-ES, a diversity improvement strategy is designed to generate and select new solutions. The performance of S-CMA-ES is compared with five representative algorithms on 36 test instances with 5–15 objectives and 500–1500 decision variables. The empirical results demonstrate the superiority of the proposed S-CMA-ES. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Shenzhen Peacock Plan[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000494883700029
|
出版者 | |
EI入藏号 | 20184205959358
|
EI主题词 | Decision making
; Evolutionary algorithms
; Multiobjective optimization
; Pareto principle
|
EI分类号 | Management:912.2
; Mathematics:921
; Optimization Techniques:921.5
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85054820433
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:119
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/43745 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.College of Systems EngineeringNational University of Defense Technology,Changsha,410073,China 2.Shenzhen Key Laboratory of Computational IntelligenceUniversity Key Laboratory of Evolving Intelligent Systems of Guangdong ProvinceDepartment of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,518055,China 3.College of Information Science and TechnologyJinan University,Guangzhou,510632,China 4.School of Geosciences and Info-PhysicsCentral South University,Changsha,410004,China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Huangke,Cheng,Ran,Wen,Jinming,et al. Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations[J]. INFORMATION SCIENCES,2020,509:457-469.
|
APA |
Chen,Huangke,Cheng,Ran,Wen,Jinming,Li,Haifeng,&Weng,Jian.(2020).Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations.INFORMATION SCIENCES,509,457-469.
|
MLA |
Chen,Huangke,et al."Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations".INFORMATION SCIENCES 509(2020):457-469.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Chen-2020-Solving la(1090KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论