中文版 | English
题名

Model complex control CMA-ES

作者
通讯作者Li,Bin
发表日期
2019-11-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号50
摘要
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has shown great performance on nonseparable optimization problems largely due to its rotation-invariant feature. However, as the computational cost of the self-adaption operation is sensitive to the scale of problems, the performance of CMA-ES heavily suffers from the well-known curse of dimensionality, which makes it impractical to many Large Scale Global Optimization (LSGO) problems. In this paper, a correlation coefficient based grouping (CCG) strategy is proposed to detect the correlations between variables in a simple yet efficient way. Then coupled with a model complexity control (MCC) framework, a new variant of CMA-ES, named MCC-CCG-CMAES, is presented for LSGO problems, which suffers less from curse of dimensionality and significantly reduces the computational cost compared with the standard CMA-ES. To the best of our knowledge, this work is the first attempt at enhancing CMA-ES with the MCC framework rather than the cooperative coevolution (CC) framework. Experimental results on the CEC′2010 large-scale global optimization (LSGO) benchmark functions show that the performance of MCC-CCG-CMAES outperforms the state-of-the-art counterparts.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen[JCYJ20180504165652917]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000497252300041
出版者
EI入藏号
20193307303740
EI主题词
Benchmarking ; Global optimization
EI分类号
Mathematics:921 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85070385502
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43814
专题工学院_计算机科学与工程系
作者单位
1.School of Information Science and TechnologyUniversity of Science and Technology of China,Hefei,230027,China
2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Tong,Xin,Yuan,Bo,Li,Bin. Model complex control CMA-ES[J]. Swarm and Evolutionary Computation,2019,50.
APA
Tong,Xin,Yuan,Bo,&Li,Bin.(2019).Model complex control CMA-ES.Swarm and Evolutionary Computation,50.
MLA
Tong,Xin,et al."Model complex control CMA-ES".Swarm and Evolutionary Computation 50(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Tong-2019-Model comp(1536KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tong,Xin]的文章
[Yuan,Bo]的文章
[Li,Bin]的文章
百度学术
百度学术中相似的文章
[Tong,Xin]的文章
[Yuan,Bo]的文章
[Li,Bin]的文章
必应学术
必应学术中相似的文章
[Tong,Xin]的文章
[Yuan,Bo]的文章
[Li,Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。