题名 | Model complex control CMA-ES |
作者 | |
通讯作者 | Li,Bin |
发表日期 | 2019-11-01
|
DOI | |
发表期刊 | |
ISSN | 2210-6502
|
EISSN | 2210-6510
|
卷号 | 50 |
摘要 | Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has shown great performance on nonseparable optimization problems largely due to its rotation-invariant feature. However, as the computational cost of the self-adaption operation is sensitive to the scale of problems, the performance of CMA-ES heavily suffers from the well-known curse of dimensionality, which makes it impractical to many Large Scale Global Optimization (LSGO) problems. In this paper, a correlation coefficient based grouping (CCG) strategy is proposed to detect the correlations between variables in a simple yet efficient way. Then coupled with a model complexity control (MCC) framework, a new variant of CMA-ES, named MCC-CCG-CMAES, is presented for LSGO problems, which suffers less from curse of dimensionality and significantly reduces the computational cost compared with the standard CMA-ES. To the best of our knowledge, this work is the first attempt at enhancing CMA-ES with the MCC framework rather than the cooperative coevolution (CC) framework. Experimental results on the CEC′2010 large-scale global optimization (LSGO) benchmark functions show that the performance of MCC-CCG-CMAES outperforms the state-of-the-art counterparts. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Science and Technology Innovation Committee Foundation of Shenzhen[JCYJ20180504165652917]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000497252300041
|
出版者 | |
EI入藏号 | 20193307303740
|
EI主题词 | Benchmarking
; Global optimization
|
EI分类号 | Mathematics:921
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85070385502
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/43814 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Information Science and TechnologyUniversity of Science and Technology of China,Hefei,230027,China 2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Tong,Xin,Yuan,Bo,Li,Bin. Model complex control CMA-ES[J]. Swarm and Evolutionary Computation,2019,50.
|
APA |
Tong,Xin,Yuan,Bo,&Li,Bin.(2019).Model complex control CMA-ES.Swarm and Evolutionary Computation,50.
|
MLA |
Tong,Xin,et al."Model complex control CMA-ES".Swarm and Evolutionary Computation 50(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Tong-2019-Model comp(1536KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论