中文版 | English
题名

Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

作者
通讯作者Bonner,Stephen
发表日期
2019-09-01
DOI
发表期刊
ISSN
2364-1185
EISSN
2364-1541
卷号4期号:3页码:269-289
摘要

Graph embeddings have become a key and widely used technique within the field of graph mining, proving to be successful across a broad range of domains including social, citation, transportation and biological. Unsupervised graph embedding techniques aim to automatically create a low-dimensional representation of a given graph, which captures key structural elements in the resulting embedding space. However, to date, there has been little work exploring exactly which topological structures are being learned in the embeddings, which could be a possible way to bring interpretability to the process. In this paper, we investigate if graph embeddings are approximating something analogous to traditional vertex-level graph features. If such a relationship can be found, it could be used to provide a theoretical insight into how graph embedding approaches function. We perform this investigation by predicting known topological features, using supervised and unsupervised methods, directly from the embedding space. If a mapping between the embeddings and topological features can be found, then we argue that the structural information encapsulated by the features is represented in the embedding space. To explore this, we present extensive experimental evaluation with five state-of-the-art unsupervised graph embedding techniques, across a range of empirical graph datasets, measuring a selection of topological features. We demonstrate that several topological features are indeed being approximated in the embedding space, allowing key insight into how graph embeddings create good representations.

关键词
相关链接[Scopus记录]
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85068349305
来源库
Scopus
引用统计
被引频次[WOS]:27
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43887
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Department of Computer ScienceDurham University,Durham,United Kingdom
2.InlecomSystems,Brussels,Belgium
3.School of Computer Science and EngineeringSUSTech,Shenzhen,China
4.School of ComputingNewcastle University,Newcastle,United Kingdom
推荐引用方式
GB/T 7714
Bonner,Stephen,Kureshi,Ibad,Brennan,John,et al. Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study[J]. Data Science and Engineering,2019,4(3):269-289.
APA
Bonner,Stephen,Kureshi,Ibad,Brennan,John,Theodoropoulos,Georgios,McGough,Andrew Stephen,&Obara,Boguslaw.(2019).Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study.Data Science and Engineering,4(3),269-289.
MLA
Bonner,Stephen,et al."Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study".Data Science and Engineering 4.3(2019):269-289.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1007@s41019-019-0(6733KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bonner,Stephen]的文章
[Kureshi,Ibad]的文章
[Brennan,John]的文章
百度学术
百度学术中相似的文章
[Bonner,Stephen]的文章
[Kureshi,Ibad]的文章
[Brennan,John]的文章
必应学术
必应学术中相似的文章
[Bonner,Stephen]的文章
[Kureshi,Ibad]的文章
[Brennan,John]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s41019-019-0097-5.pdf
格式: Adobe PDF
文件名: 10.1007@s41019-019-0097-5.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。