中文版 | English
题名

DeeReCT-PolyA: A robust and generic deep learning method for PAS identification

作者
通讯作者Chen,Wei; Gao,Xin
发表日期
2019-07-15
DOI
发表期刊
ISSN
1367-4803
EISSN
1460-2059
卷号35期号:14页码:2371-2379
摘要
Motivation: Polyadenylation is a critical step for gene expression regulation during the maturation of mRNA. An accurate and robust method for poly(A) signals (PASs) identification is not only desired for the purpose of better transcripts' end annotation, but can also help us gain a deeper insight of the underlying regulatory mechanism. Although many methods have been proposed for PAS recognition, most of them are PAS motif- and human-specific, which leads to high risks of overfitting, low generalization power, and inability to reveal the connections between the underlying mechanisms of different mammals. Results: In this work, we propose a robust, PAS motif agnostic, and highly interpretable and transferrable deep learning model for accurate PAS recognition, which requires no prior knowledge or human-designed features. We show that our single model trained over all human PAS motifs not only outperforms the state-of-the-art methods trained on specific motifs, but can also be generalized well to two mouse datasets. Moreover, we further increase the prediction accuracy by transferring the deep learning model trained on the data of one species to the data of a different species. Several novel underlying poly(A) patterns are revealed through the visualization of important oligomers and positions in our trained models. Finally, we interpret the deep learning models by converting the convolutional filters into sequence logos and quantitatively compare the sequence logos between human and mouse datasets.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
WOS记录号
WOS:000477703600074
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85068940235
来源库
Scopus
引用统计
被引频次[WOS]:31
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43902
专题生命科学学院_生物系
生命科学学院
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering (CSE)Washington University in St Louis,St Louis,63130,United States
2.ComputerElectrical and Mathematical Sciences and Engineering (CEMSE) DivisionKing Abdullah University of Science and Technology (KAUST)Computational Bioscience Research Center (CBRC),Thuwal,23955-6900,Saudi Arabia
3.Department of BiologySouthern University of Science and Technology (SUSTC),Shenzhen,518055,China
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Xia,Zhihao,Li,Yu,Zhang,Bin,et al. DeeReCT-PolyA: A robust and generic deep learning method for PAS identification[J]. BIOINFORMATICS,2019,35(14):2371-2379.
APA
Xia,Zhihao.,Li,Yu.,Zhang,Bin.,Li,Zhongxiao.,Hu,Yuhui.,...&Gao,Xin.(2019).DeeReCT-PolyA: A robust and generic deep learning method for PAS identification.BIOINFORMATICS,35(14),2371-2379.
MLA
Xia,Zhihao,et al."DeeReCT-PolyA: A robust and generic deep learning method for PAS identification".BIOINFORMATICS 35.14(2019):2371-2379.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia,Zhihao]的文章
[Li,Yu]的文章
[Zhang,Bin]的文章
百度学术
百度学术中相似的文章
[Xia,Zhihao]的文章
[Li,Yu]的文章
[Zhang,Bin]的文章
必应学术
必应学术中相似的文章
[Xia,Zhihao]的文章
[Li,Yu]的文章
[Zhang,Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。