中文版 | English
题名

Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential

作者
通讯作者Wang,Cheng; Wang,Xiaoming
发表日期
2019-06-01
DOI
发表期刊
ISSN
2590-0552
EISSN
2590-0552
卷号3
摘要

In this paper we present and analyze finite difference numerical schemes for the Cahn-Hilliard equation with a logarithmic Flory Huggins energy potential. Both first and second order accurate temporal algorithms are considered. In the first order scheme, we treat the nonlinear logarithmic terms and the surface diffusion term implicitly, and update the linear expansive term and the mobility explicitly. We provide a theoretical justification that this numerical algorithm has a unique solution, such that the positivity is always preserved for the logarithmic arguments, i.e., the phase variable is always between −1 and 1, at a point-wise level. In particular, our analysis reveals a subtle fact: the singular nature of the logarithmic term around the values of −1 and 1 prevents the numerical solution reaching these singular values, so that the numerical scheme is always well-defined as long as the numerical solution stays similarly bounded at the previous time step. Furthermore, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. Such an analysis technique can also be applied to a second order numerical scheme in which the BDF temporal stencil is applied, the expansive term is updated by a second order Adams-Bashforth explicit extrapolation formula, and an artificial Douglas-Dupont regularization term is added to ensure the energy dissipativity. The unique solvability and the positivity-preserving property for the second order scheme are proved using similar ideas, namely, the singular nature of the logarithmic term plays an essential role. For both the first and second order accurate schemes, we are able to derive an optimal rate convergence analysis. The case with a non-constant mobility is analyzed as well. We also describe a practical and efficient multigrid solver for the proposed numerical schemes, and present some numerical results, which demonstrate the robustness of the numerical schemes.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43931
专题理学院_数学系
作者单位
1.Shanghai Key Laboratory for Contemporary Applied MathematicsSchool of Mathematical SciencesFudan University,Shanghai,200433,China
2.Mathematics DepartmentUniversity of Massachusetts,North Dartmouth,02747,United States
3.Department of MathematicsSouthern University of Science and Technology,Shenzhen,518055,China
4.Fudan University,Shanghai,200433,China
5.Florida State University,Tallahassee,32306,United States
6.Mathematics DepartmentUniversity of Tennessee,Knoxville,37996,United States
推荐引用方式
GB/T 7714
Chen,Wenbin,Wang,Cheng,Wang,Xiaoming,et al. Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential[J]. Journal of Computational Physics: X,2019,3.
APA
Chen,Wenbin,Wang,Cheng,Wang,Xiaoming,&Wise,Steven M..(2019).Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential.Journal of Computational Physics: X,3.
MLA
Chen,Wenbin,et al."Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential".Journal of Computational Physics: X 3(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Wenbin]的文章
[Wang,Cheng]的文章
[Wang,Xiaoming]的文章
百度学术
百度学术中相似的文章
[Chen,Wenbin]的文章
[Wang,Cheng]的文章
[Wang,Xiaoming]的文章
必应学术
必应学术中相似的文章
[Chen,Wenbin]的文章
[Wang,Cheng]的文章
[Wang,Xiaoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。