题名 | Reinforcement learning meets hybrid zero dynamics: A case study for RABBIT |
作者 | |
通讯作者 | Zhang,Wei |
DOI | |
发表日期 | 2019-05-01
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-5386-8176-3
|
会议录名称 | |
卷号 | 2019-May
|
页码 | 284-290
|
会议日期 | 20-24 May 2019
|
会议地点 | Montreal, QC, Canada
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The design of feedback controllers for bipedal robots is challenging due to the hybrid nature of its dynamics and the complexity imposed by high-dimensional bipedal models. In this paper, we present a novel approach for the design of feedback controllers using Reinforcement Learning (RL) and Hybrid Zero Dynamics (HZD). Existing RL approaches for bipedal walking are inefficient as they do not consider the underlying physics, often requires substantial training, and the resulting controller may not be applicable to real robots. HZD is a powerful tool for bipedal control with local stability guarantees of the walking limit cycles. In this paper, we propose a non traditional RL structure that embeds the HZD framework into the policy learning. More specifically, we propose to use RL to find a control policy that maps from the robot's reduced order states to a set of parameters that define the desired trajectories for the robot's joints through the virtual constraints. Then, these trajectories are tracked using an adaptive PD controller. The method results in a stable and robust control policy that is able to track variable speed within a continuous interval. Robustness of the policy is evaluated by applying external forces to the torso of the robot. The proposed RL framework is implemented and demonstrated in OpenAI Gym with the MuJoCo physics engine based on the well-known RABBIT robot model. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Science Foundation[CNS-1552838]
|
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000494942300035
|
EI入藏号 | 20193507383636
|
Scopus记录号 | 2-s2.0-85071450874
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8793627 |
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/43941 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Electrical and Computer EngineeringOhio State University,Columbus,United States 2.EECSUniversity of Michigan,Ann Arbor,United States 3.Department of Mechanical EngineeringUniversity of Hong Kong,Hong Kong,Hong Kong 4.SUSTech Institute of RoboticsSouthern University of Science and Technology,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Castillo,Guillermo A.,Weng,Bowen,Hereid,Ayonga,et al. Reinforcement learning meets hybrid zero dynamics: A case study for RABBIT[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:284-290.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@ICRA.2019.87(1947KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论