中文版 | English
题名

Reinforcement learning meets hybrid zero dynamics: A case study for RABBIT

作者
通讯作者Zhang,Wei
DOI
发表日期
2019-05-01
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-5386-8176-3
会议录名称
卷号
2019-May
页码
284-290
会议日期
20-24 May 2019
会议地点
Montreal, QC, Canada
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The design of feedback controllers for bipedal robots is challenging due to the hybrid nature of its dynamics and the complexity imposed by high-dimensional bipedal models. In this paper, we present a novel approach for the design of feedback controllers using Reinforcement Learning (RL) and Hybrid Zero Dynamics (HZD). Existing RL approaches for bipedal walking are inefficient as they do not consider the underlying physics, often requires substantial training, and the resulting controller may not be applicable to real robots. HZD is a powerful tool for bipedal control with local stability guarantees of the walking limit cycles. In this paper, we propose a non traditional RL structure that embeds the HZD framework into the policy learning. More specifically, we propose to use RL to find a control policy that maps from the robot's reduced order states to a set of parameters that define the desired trajectories for the robot's joints through the virtual constraints. Then, these trajectories are tracked using an adaptive PD controller. The method results in a stable and robust control policy that is able to track variable speed within a continuous interval. Robustness of the policy is evaluated by applying external forces to the torso of the robot. The proposed RL framework is implemented and demonstrated in OpenAI Gym with the MuJoCo physics engine based on the well-known RABBIT robot model.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Science Foundation[CNS-1552838]
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000494942300035
EI入藏号
20193507383636
Scopus记录号
2-s2.0-85071450874
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8793627
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43941
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Electrical and Computer EngineeringOhio State University,Columbus,United States
2.EECSUniversity of Michigan,Ann Arbor,United States
3.Department of Mechanical EngineeringUniversity of Hong Kong,Hong Kong,Hong Kong
4.SUSTech Institute of RoboticsSouthern University of Science and Technology,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Castillo,Guillermo A.,Weng,Bowen,Hereid,Ayonga,et al. Reinforcement learning meets hybrid zero dynamics: A case study for RABBIT[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:284-290.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@ICRA.2019.87(1947KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Castillo,Guillermo A.]的文章
[Weng,Bowen]的文章
[Hereid,Ayonga]的文章
百度学术
百度学术中相似的文章
[Castillo,Guillermo A.]的文章
[Weng,Bowen]的文章
[Hereid,Ayonga]的文章
必应学术
必应学术中相似的文章
[Castillo,Guillermo A.]的文章
[Weng,Bowen]的文章
[Hereid,Ayonga]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICRA.2019.8793627.pdf
格式: Adobe PDF
文件名: 10.1109@ICRA.2019.8793627.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。