中文版 | English
题名

Exposing Library API Misuses Via Mutation Analysis

作者
通讯作者Liu,Yepang
DOI
发表日期
2019-05-01
ISSN
0270-5257
ISBN
978-1-7281-0870-4
会议录名称
卷号
2019-May
页码
866-877
会议日期
25-31 May 2019
会议地点
Montreal, QC, Canada
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Misuses of library APIs are pervasive and often lead to software crashes and vulnerability issues. Various static analysis tools have been proposed to detect library API misuses. They often involve mining frequent patterns from a large number of correct API usage examples, which can be hard to obtain in practice. They also suffer from low precision due to an over-simplified assumption that a deviation from frequent usage patterns indicates a misuse. We make two observations on the discovery of API misuse patterns. First, API misuses can be represented as mutants of the corresponding correct usages. Second, whether a mutant will introduce a misuse can be validated via executing it against a test suite and analyzing the execution information. Based on these observations, we propose MutApi, the first approach to discovering API misuse patterns via mutation analysis. To effectively mimic API misuses based on correct usages, we first design eight effective mutation operators inspired by the common characteristics of API misuses. MutApi generates mutants by applying these mutation operators on a set of client projects and collects mutant-killing tests as well as the associated stack traces. Misuse patterns are discovered from the killed mutants that are prioritized according to their likelihood of causing API misuses based on the collected information. We applied MutApi on 16 client projects with respect to 73 popular Java APIs. The results show that MutApi is able to discover substantial API misuse patterns with a high precision of 0.78. It also achieves a recall of 0.49 on the MuBench benchmark, which outperforms the state-of-the-art techniques.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Hong Kong RGC/GRF Grant[16202917]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000560373200075
EI入藏号
20193807454755
EI主题词
Software Testing ; Static Analysis
EI分类号
Computer Software, Data HAndling And Applications:723 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85070633588
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8812114
引用统计
被引频次[WOS]:27
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43942
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Hong Kong University of Science and Technology,Hong Kong,Hong Kong
2.Shenzhen Key Laboratory of ComputationalIntelligence Southern University of Science and Technology,Shenzhen,China
3.Sun Yat-sen University,China
4.ETH ZurichSwitzerland and UC Davis,United States
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wen,Ming,Liu,Yepang,Wu,Rongxin,et al. Exposing Library API Misuses Via Mutation Analysis[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2019:866-877.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wen,Ming]的文章
[Liu,Yepang]的文章
[Wu,Rongxin]的文章
百度学术
百度学术中相似的文章
[Wen,Ming]的文章
[Liu,Yepang]的文章
[Wu,Rongxin]的文章
必应学术
必应学术中相似的文章
[Wen,Ming]的文章
[Liu,Yepang]的文章
[Wu,Rongxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。