题名 | Probabilistic feature selection and classification vector machine |
作者 | |
通讯作者 | Chen,Huanhuan |
发表日期 | 2019-05-01
|
DOI | |
发表期刊 | |
ISSN | 1556-4681
|
EISSN | 1556-472X
|
卷号 | 13期号:2 |
摘要 | Sparse Bayesian learning is a state-of-the-art supervised learning algorithm that can choose a subset of relevant samples from the input data and make reliable probabilistic predictions. However, in the presence of high-dimensional data with irrelevant features, traditional sparse Bayesian classifiers suffer from performance degradation and low efficiency due to the incapability of eliminating irrelevant features. To tackle this problem, we propose a novel sparse Bayesian embedded feature selection algorithm that adopts truncated Gaussian distributions as both sample and feature priors. The proposed algorithm, called probabilistic feature selection and classification vector machine (PFCVM) is able to simultaneously select relevant features and samples for classification tasks. In order to derive the analytical solutions, Laplace approximation is applied to compute approximate posteriors and marginal likelihoods. Finally, parameters and hyperparameters are optimized by the type-II maximum likelihood method. Experiments on three datasets validate the performance of PFCVM along two dimensions: classification performance and effectiveness for feature selection. Finally, we analyze the generalization performance and derive a generalization error bound for PFCVM. By tightening the bound, the importance of feature selection is demonstrated. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Netherlands Organisation for Scientific Research (NWO)[CI-14-25, 652.002.001]
; Netherlands Organisation for Scientific Research (NWO)[612.001.551]
; Netherlands Organisation for Scientific Research (NWO)[652.001.003]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
|
WOS记录号 | WOS:000495426500008
|
出版者 | |
EI入藏号 | 20192106952366
|
EI主题词 | Clustering algorithms
; Data mining
; Feature extraction
; Learning algorithms
; Machine learning
; Maximum likelihood
; Supervised learning
|
EI分类号 | Data Processing and Image Processing:723.2
; Information Sources and Analysis:903.1
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85065804414
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:28
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/43949 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science and TechnologyUniversity of Science and Technology of China,Hefei, Anhui,230027,China 2.Informatics InstituteUniversity of Amsterdam,Amsterdam,Netherlands 3.Department of Computer Science and EngineeringShenzhen Key Laboratory of Computational IntelligenceSouthern University of Science and Technology,Shenzhen, Guangdong,518055,China |
推荐引用方式 GB/T 7714 |
Jiang,Bingbing,Li,Chang,De Rijke,Maarten,et al. Probabilistic feature selection and classification vector machine[J]. ACM Transactions on Knowledge Discovery from Data,2019,13(2).
|
APA |
Jiang,Bingbing,Li,Chang,De Rijke,Maarten,Yao,Xin,&Chen,Huanhuan.(2019).Probabilistic feature selection and classification vector machine.ACM Transactions on Knowledge Discovery from Data,13(2).
|
MLA |
Jiang,Bingbing,et al."Probabilistic feature selection and classification vector machine".ACM Transactions on Knowledge Discovery from Data 13.2(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1145@3309541.pdf(1734KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论