中文版 | English
题名

Probabilistic feature selection and classification vector machine

作者
通讯作者Chen,Huanhuan
发表日期
2019-05-01
DOI
发表期刊
ISSN
1556-4681
EISSN
1556-472X
卷号13期号:2
摘要
Sparse Bayesian learning is a state-of-the-art supervised learning algorithm that can choose a subset of relevant samples from the input data and make reliable probabilistic predictions. However, in the presence of high-dimensional data with irrelevant features, traditional sparse Bayesian classifiers suffer from performance degradation and low efficiency due to the incapability of eliminating irrelevant features. To tackle this problem, we propose a novel sparse Bayesian embedded feature selection algorithm that adopts truncated Gaussian distributions as both sample and feature priors. The proposed algorithm, called probabilistic feature selection and classification vector machine (PFCVM) is able to simultaneously select relevant features and samples for classification tasks. In order to derive the analytical solutions, Laplace approximation is applied to compute approximate posteriors and marginal likelihoods. Finally, parameters and hyperparameters are optimized by the type-II maximum likelihood method. Experiments on three datasets validate the performance of PFCVM along two dimensions: classification performance and effectiveness for feature selection. Finally, we analyze the generalization performance and derive a generalization error bound for PFCVM. By tightening the bound, the importance of feature selection is demonstrated.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Netherlands Organisation for Scientific Research (NWO)[CI-14-25, 652.002.001] ; Netherlands Organisation for Scientific Research (NWO)[612.001.551] ; Netherlands Organisation for Scientific Research (NWO)[652.001.003]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号
WOS:000495426500008
出版者
EI入藏号
20192106952366
EI主题词
Clustering algorithms ; Data mining ; Feature extraction ; Learning algorithms ; Machine learning ; Maximum likelihood ; Supervised learning
EI分类号
Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85065804414
来源库
Scopus
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43949
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science and TechnologyUniversity of Science and Technology of China,Hefei, Anhui,230027,China
2.Informatics InstituteUniversity of Amsterdam,Amsterdam,Netherlands
3.Department of Computer Science and EngineeringShenzhen Key Laboratory of Computational IntelligenceSouthern University of Science and Technology,Shenzhen, Guangdong,518055,China
推荐引用方式
GB/T 7714
Jiang,Bingbing,Li,Chang,De Rijke,Maarten,et al. Probabilistic feature selection and classification vector machine[J]. ACM Transactions on Knowledge Discovery from Data,2019,13(2).
APA
Jiang,Bingbing,Li,Chang,De Rijke,Maarten,Yao,Xin,&Chen,Huanhuan.(2019).Probabilistic feature selection and classification vector machine.ACM Transactions on Knowledge Discovery from Data,13(2).
MLA
Jiang,Bingbing,et al."Probabilistic feature selection and classification vector machine".ACM Transactions on Knowledge Discovery from Data 13.2(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1145@3309541.pdf(1734KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Bingbing]的文章
[Li,Chang]的文章
[De Rijke,Maarten]的文章
百度学术
百度学术中相似的文章
[Jiang,Bingbing]的文章
[Li,Chang]的文章
[De Rijke,Maarten]的文章
必应学术
必应学术中相似的文章
[Jiang,Bingbing]的文章
[Li,Chang]的文章
[De Rijke,Maarten]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3309541.pdf
格式: Adobe PDF
文件名: 10.1145@3309541.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。