中文版 | English
题名

Boosted kernel ridge regression: Optimal learning rates and early stopping

作者
发表日期
2019-02-01
发表期刊
ISSN
1532-4435
EISSN
1533-7928
卷号20
摘要
In this paper, we introduce a learning algorithm, boosted kernel ridge regression (BKRR), that combines L2-Boosting with the kernel ridge regression (KRR). We analyze the learning performance of this algorithm in the framework of learning theory. We show that BKRR provides a new bias-variance trade-off via tuning the number of boosting iterations, which is different from KRR via adjusting the regularization parameter. A (semi-)exponential bias-variance trade-off is derived for BKRR, exhibiting a stable relationship between the generalization error and the number of iterations. Furthermore, an adaptive stopping rule is proposed, with which BKRR achieves the optimal learning rate without saturation.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85072647947
来源库
Scopus
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/43974
专题工学院_计算机科学与工程系
作者单位
1.Department of MathematicsWenzhou University,Wenzhou,China
2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,China
3.School of Data Science and Department of MathematicsCity University of Hong Kong,Kowloon,Hong Kong
推荐引用方式
GB/T 7714
Lin,Shao Bo,Lei,Yunwen,Zhou,Ding Xuan. Boosted kernel ridge regression: Optimal learning rates and early stopping[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2019,20.
APA
Lin,Shao Bo,Lei,Yunwen,&Zhou,Ding Xuan.(2019).Boosted kernel ridge regression: Optimal learning rates and early stopping.JOURNAL OF MACHINE LEARNING RESEARCH,20.
MLA
Lin,Shao Bo,et al."Boosted kernel ridge regression: Optimal learning rates and early stopping".JOURNAL OF MACHINE LEARNING RESEARCH 20(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Shao Bo]的文章
[Lei,Yunwen]的文章
[Zhou,Ding Xuan]的文章
百度学术
百度学术中相似的文章
[Lin,Shao Bo]的文章
[Lei,Yunwen]的文章
[Zhou,Ding Xuan]的文章
必应学术
必应学术中相似的文章
[Lin,Shao Bo]的文章
[Lei,Yunwen]的文章
[Zhou,Ding Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。