题名 | Boosted kernel ridge regression: Optimal learning rates and early stopping |
作者 | |
发表日期 | 2019-02-01
|
发表期刊 | |
ISSN | 1532-4435
|
EISSN | 1533-7928
|
卷号 | 20 |
摘要 | In this paper, we introduce a learning algorithm, boosted kernel ridge regression (BKRR), that combines L2-Boosting with the kernel ridge regression (KRR). We analyze the learning performance of this algorithm in the framework of learning theory. We show that BKRR provides a new bias-variance trade-off via tuning the number of boosting iterations, which is different from KRR via adjusting the regularization parameter. A (semi-)exponential bias-variance trade-off is derived for BKRR, exhibiting a stable relationship between the generalization error and the number of iterations. Furthermore, an adaptive stopping rule is proposed, with which BKRR achieves the optimal learning rate without saturation. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85072647947
|
来源库 | Scopus
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/43974 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of MathematicsWenzhou University,Wenzhou,China 2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,China 3.School of Data Science and Department of MathematicsCity University of Hong Kong,Kowloon,Hong Kong |
推荐引用方式 GB/T 7714 |
Lin,Shao Bo,Lei,Yunwen,Zhou,Ding Xuan. Boosted kernel ridge regression: Optimal learning rates and early stopping[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2019,20.
|
APA |
Lin,Shao Bo,Lei,Yunwen,&Zhou,Ding Xuan.(2019).Boosted kernel ridge regression: Optimal learning rates and early stopping.JOURNAL OF MACHINE LEARNING RESEARCH,20.
|
MLA |
Lin,Shao Bo,et al."Boosted kernel ridge regression: Optimal learning rates and early stopping".JOURNAL OF MACHINE LEARNING RESEARCH 20(2019).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论