题名 | A new method for constructing ensemble polynomial regression model in privacy preserving distributed environment |
作者 | |
通讯作者 | Shao,Yan |
DOI | |
发表日期 | 2019
|
ISSN | 0277-786X
|
EISSN | 1996-756X
|
会议录名称 | |
卷号 | 11198
|
会议地点 | Nanjing, China
|
出版地 | 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
|
出版者 | |
摘要 | The idea of ensemble learning can be used to solve problems about privacy preserving distributed data mining conveniently. Owners of distributed datasets can get an integrated model securely just by sharing and combining their sub models which are built on their respective sample sets, and generally the integrated model is more powerful than any sub model. However, sharing the sub models may cause serious privacy problems in some cases. So in this paper, we present a new method, based on which the data holders can integrate their sub polynomial regression models securely and efficiently without sharing them, and get the optimal combination regression model. In addition to theoretical analysis, we also verify the availability of the new method through experiments. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Optics
|
WOS类目 | Computer Science, Artificial Intelligence
; Optics
|
WOS记录号 | WOS:000502121300016
|
EI入藏号 | 20193907478821
|
EI主题词 | Data mining
; Pattern recognition
; Polynomials
; Regression analysis
|
EI分类号 | Data Processing and Image Processing:723.2
; Algebra:921.1
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85072637377
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44065 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science and TechnologyUniversity of Science and Technology of China,Hefei,China 2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Shao,Yan,Li,Zhanjun,Hong,Wenjing. A new method for constructing ensemble polynomial regression model in privacy preserving distributed environment[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE,2019.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论