中文版 | English
题名

A new method for constructing ensemble polynomial regression model in privacy preserving distributed environment

作者
通讯作者Shao,Yan
DOI
发表日期
2019
ISSN
0277-786X
EISSN
1996-756X
会议录名称
卷号
11198
会议地点
Nanjing, China
出版地
1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
出版者
摘要
The idea of ensemble learning can be used to solve problems about privacy preserving distributed data mining conveniently. Owners of distributed datasets can get an integrated model securely just by sharing and combining their sub models which are built on their respective sample sets, and generally the integrated model is more powerful than any sub model. However, sharing the sub models may cause serious privacy problems in some cases. So in this paper, we present a new method, based on which the data holders can integrate their sub polynomial regression models securely and efficiently without sharing them, and get the optimal combination regression model. In addition to theoretical analysis, we also verify the availability of the new method through experiments.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Optics
WOS类目
Computer Science, Artificial Intelligence ; Optics
WOS记录号
WOS:000502121300016
EI入藏号
20193907478821
EI主题词
Data mining ; Pattern recognition ; Polynomials ; Regression analysis
EI分类号
Data Processing and Image Processing:723.2 ; Algebra:921.1 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85072637377
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44065
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science and TechnologyUniversity of Science and Technology of China,Hefei,China
2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Shao,Yan,Li,Zhanjun,Hong,Wenjing. A new method for constructing ensemble polynomial regression model in privacy preserving distributed environment[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE,2019.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shao,Yan]的文章
[Li,Zhanjun]的文章
[Hong,Wenjing]的文章
百度学术
百度学术中相似的文章
[Shao,Yan]的文章
[Li,Zhanjun]的文章
[Hong,Wenjing]的文章
必应学术
必应学术中相似的文章
[Shao,Yan]的文章
[Li,Zhanjun]的文章
[Hong,Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。