中文版 | English
题名

Fault tolerance in memristive crossbar-based neuromorphic computing systems

作者
通讯作者Huang,Zhengfeng
发表日期
2019
DOI
发表期刊
ISSN
0167-9260
EISSN
1872-7522
卷号70页码:70-79
摘要
In recent years, neuromorphic computing systems (NCS) based on memristive crossbar have provided a promising solution to enable acceleration of neural networks. However, Stuck-at faults in the memristor devices significantly degrade the computing accuracy of NCS. In this paper, we propose an effective fault tolerant framework for memristive crossbar-based neuromorphic computing systems. First, a fault tolerance-aware hierarchical clustering method is proposed to partition weight connections of a sparse neural network into clusters. Then, for each cluster, memristive crossbar configuration is proposed to determine a suitable size of the crossbar with consideration of both hardware cost and successful mapping rate. Next, an integer linear programming formulation is developed to derive a connection-memristor mapping for fault tolerance. Finally, an efficient matching-based heuristic algorithm is further proposed to speed-up the fault-tolerant mapping process. Experimental results show that the proposed fault tolerant framework can improve the successful mapping rate and simultaneously reduce the hardware cost.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Fundamental Research Funds for the Central Universities[JZ2019HGBZ0159] ; National Natural Science Foundation of China[61874156] ; National Natural Science Foundation of China[]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000503087800008
出版者
EI入藏号
20193907464982
EI主题词
Cluster analysis ; Fault tolerance ; Heuristic algorithms ; Integer programming ; Mapping ; Memristors
EI分类号
Surveying:405.3 ; Semiconductor Devices and Integrated Circuits:714.2 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85072389380
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44067
专题工学院_计算机科学与工程系
工学院_深港微电子学院
作者单位
1.Department of Electronic Science and TechnologyHefei University of Technology,China
2.School of MicroelectronicsUniversity of Science and Technology of China,China
3.Department of Computer Science and EngineeringThe Chinese University of Hong Kong,China
4.Department of Computer Science and EngineeringSouthern University of Science and Technology,China
推荐引用方式
GB/T 7714
Xu,Qi,Chen,Song,Geng,Hao,et al. Fault tolerance in memristive crossbar-based neuromorphic computing systems[J]. INTEGRATION-THE VLSI JOURNAL,2019,70:70-79.
APA
Xu,Qi.,Chen,Song.,Geng,Hao.,Yuan,Bo.,Yu,Bei.,...&Huang,Zhengfeng.(2019).Fault tolerance in memristive crossbar-based neuromorphic computing systems.INTEGRATION-THE VLSI JOURNAL,70,70-79.
MLA
Xu,Qi,et al."Fault tolerance in memristive crossbar-based neuromorphic computing systems".INTEGRATION-THE VLSI JOURNAL 70(2019):70-79.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Xu-2020-Fault tolera(1472KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Qi]的文章
[Chen,Song]的文章
[Geng,Hao]的文章
百度学术
百度学术中相似的文章
[Xu,Qi]的文章
[Chen,Song]的文章
[Geng,Hao]的文章
必应学术
必应学术中相似的文章
[Xu,Qi]的文章
[Chen,Song]的文章
[Geng,Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。