题名 | Fault tolerance in memristive crossbar-based neuromorphic computing systems |
作者 | |
通讯作者 | Huang,Zhengfeng |
发表日期 | 2019
|
DOI | |
发表期刊 | |
ISSN | 0167-9260
|
EISSN | 1872-7522
|
卷号 | 70页码:70-79 |
摘要 | In recent years, neuromorphic computing systems (NCS) based on memristive crossbar have provided a promising solution to enable acceleration of neural networks. However, Stuck-at faults in the memristor devices significantly degrade the computing accuracy of NCS. In this paper, we propose an effective fault tolerant framework for memristive crossbar-based neuromorphic computing systems. First, a fault tolerance-aware hierarchical clustering method is proposed to partition weight connections of a sparse neural network into clusters. Then, for each cluster, memristive crossbar configuration is proposed to determine a suitable size of the crossbar with consideration of both hardware cost and successful mapping rate. Next, an integer linear programming formulation is developed to derive a connection-memristor mapping for fault tolerance. Finally, an efficient matching-based heuristic algorithm is further proposed to speed-up the fault-tolerant mapping process. Experimental results show that the proposed fault tolerant framework can improve the successful mapping rate and simultaneously reduce the hardware cost. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Fundamental Research Funds for the Central Universities[JZ2019HGBZ0159]
; National Natural Science Foundation of China[61874156]
; National Natural Science Foundation of China[]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000503087800008
|
出版者 | |
EI入藏号 | 20193907464982
|
EI主题词 | Cluster analysis
; Fault tolerance
; Heuristic algorithms
; Integer programming
; Mapping
; Memristors
|
EI分类号 | Surveying:405.3
; Semiconductor Devices and Integrated Circuits:714.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
; Computer Programming:723.1
; Optimization Techniques:921.5
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85072389380
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44067 |
专题 | 工学院_计算机科学与工程系 工学院_深港微电子学院 |
作者单位 | 1.Department of Electronic Science and TechnologyHefei University of Technology,China 2.School of MicroelectronicsUniversity of Science and Technology of China,China 3.Department of Computer Science and EngineeringThe Chinese University of Hong Kong,China 4.Department of Computer Science and EngineeringSouthern University of Science and Technology,China |
推荐引用方式 GB/T 7714 |
Xu,Qi,Chen,Song,Geng,Hao,et al. Fault tolerance in memristive crossbar-based neuromorphic computing systems[J]. INTEGRATION-THE VLSI JOURNAL,2019,70:70-79.
|
APA |
Xu,Qi.,Chen,Song.,Geng,Hao.,Yuan,Bo.,Yu,Bei.,...&Huang,Zhengfeng.(2019).Fault tolerance in memristive crossbar-based neuromorphic computing systems.INTEGRATION-THE VLSI JOURNAL,70,70-79.
|
MLA |
Xu,Qi,et al."Fault tolerance in memristive crossbar-based neuromorphic computing systems".INTEGRATION-THE VLSI JOURNAL 70(2019):70-79.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Xu-2020-Fault tolera(1472KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论