题名 | A large-scale in-memory computing for deep neural network with trained quantization |
作者 | |
发表日期 | 2019
|
DOI | |
发表期刊 | |
ISSN | 0167-9260
|
EISSN | 1872-7522
|
卷号 | 69页码:345-355 |
摘要 | There is a grand challenge to develop energy-efficient yet high throughput accelerator for deep learning. This paper shows an in-memory deep learning accelerator with trained low-bitwidth quantization method. Firstly, we show that a large-scale deep residual network (ResNet) can be trained with 4-bit quantization constraints for both weights and features under high accuracy. Next, we show the quantized ResNet can be mapped to resistive random access memory (ReRAM) with in-memory computing architecture, which can achieve significantly higher parallelism and higher energy-efficient than the state-of-art works. Experiment results using the benchmark of ImageNet show that the training on the ReRAM-crossbar with 4-bit quantization achieves 88.1% accuracy, and only losses 2.5% compared to the full-precision one. Moreover, the proposed accelerator can achieve 432 times speed-up and six-magnitude more energy-efficiency than a CPU-based implementation; 1.30 times speed-up and four-magnitude more energy-efficiency when compared to a GPU-based implementation; and 15.21 times speed-up and 498 times more energy-efficiency than a CMOS-ASIC-based implementation. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[61604095]
; Shanghai Jiao Tong University[JCYJ20180504165652917]
; Shanghai Jiao Tong University[]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000500051400031
|
出版者 | |
EI入藏号 | 20193607403860
|
EI主题词 | Arts computing
; Computer architecture
; Energy efficiency
; RRAM
; Scales (weighing instruments)
|
EI分类号 | Energy Conservation:525.2
; Data Processing and Image Processing:723.2
; Special Purpose Instruments:943.3
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85071689026
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44073 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Micro/NanoelectronicsShanghai Jiao Tong University,Shanghai,200240,China 2.Department of Electrical and Electronic EngineeringSouthern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Cheng,Yuan,Wang,Chao,Chen,Hai Bao,et al. A large-scale in-memory computing for deep neural network with trained quantization[J]. INTEGRATION-THE VLSI JOURNAL,2019,69:345-355.
|
APA |
Cheng,Yuan,Wang,Chao,Chen,Hai Bao,&Yu,Hao.(2019).A large-scale in-memory computing for deep neural network with trained quantization.INTEGRATION-THE VLSI JOURNAL,69,345-355.
|
MLA |
Cheng,Yuan,et al."A large-scale in-memory computing for deep neural network with trained quantization".INTEGRATION-THE VLSI JOURNAL 69(2019):345-355.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Cheng-2019-A large-s(2964KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论