中文版 | English
题名

A large-scale in-memory computing for deep neural network with trained quantization

作者
发表日期
2019
DOI
发表期刊
ISSN
0167-9260
EISSN
1872-7522
卷号69页码:345-355
摘要
There is a grand challenge to develop energy-efficient yet high throughput accelerator for deep learning. This paper shows an in-memory deep learning accelerator with trained low-bitwidth quantization method. Firstly, we show that a large-scale deep residual network (ResNet) can be trained with 4-bit quantization constraints for both weights and features under high accuracy. Next, we show the quantized ResNet can be mapped to resistive random access memory (ReRAM) with in-memory computing architecture, which can achieve significantly higher parallelism and higher energy-efficient than the state-of-art works. Experiment results using the benchmark of ImageNet show that the training on the ReRAM-crossbar with 4-bit quantization achieves 88.1% accuracy, and only losses 2.5% compared to the full-precision one. Moreover, the proposed accelerator can achieve 432 times speed-up and six-magnitude more energy-efficiency than a CPU-based implementation; 1.30 times speed-up and four-magnitude more energy-efficiency when compared to a GPU-based implementation; and 15.21 times speed-up and 498 times more energy-efficiency than a CMOS-ASIC-based implementation.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61604095] ; Shanghai Jiao Tong University[JCYJ20180504165652917] ; Shanghai Jiao Tong University[]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000500051400031
出版者
EI入藏号
20193607403860
EI主题词
Arts computing ; Computer architecture ; Energy efficiency ; RRAM ; Scales (weighing instruments)
EI分类号
Energy Conservation:525.2 ; Data Processing and Image Processing:723.2 ; Special Purpose Instruments:943.3
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85071689026
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44073
专题工学院_电子与电气工程系
作者单位
1.Department of Micro/NanoelectronicsShanghai Jiao Tong University,Shanghai,200240,China
2.Department of Electrical and Electronic EngineeringSouthern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Cheng,Yuan,Wang,Chao,Chen,Hai Bao,et al. A large-scale in-memory computing for deep neural network with trained quantization[J]. INTEGRATION-THE VLSI JOURNAL,2019,69:345-355.
APA
Cheng,Yuan,Wang,Chao,Chen,Hai Bao,&Yu,Hao.(2019).A large-scale in-memory computing for deep neural network with trained quantization.INTEGRATION-THE VLSI JOURNAL,69,345-355.
MLA
Cheng,Yuan,et al."A large-scale in-memory computing for deep neural network with trained quantization".INTEGRATION-THE VLSI JOURNAL 69(2019):345-355.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cheng-2019-A large-s(2964KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng,Yuan]的文章
[Wang,Chao]的文章
[Chen,Hai Bao]的文章
百度学术
百度学术中相似的文章
[Cheng,Yuan]的文章
[Wang,Chao]的文章
[Chen,Hai Bao]的文章
必应学术
必应学术中相似的文章
[Cheng,Yuan]的文章
[Wang,Chao]的文章
[Chen,Hai Bao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。