中文版 | English
题名

Working principles of binary differential evolution

作者
通讯作者Doerr,Benjamin; Zheng,Weijie
发表日期
2020
DOI
发表期刊
ISSN
0304-3975
EISSN
1879-2294
卷号801页码:110-142
摘要

We conduct a first fundamental analysis of the working principles of binary differential evolution (BDE), an optimization heuristic for binary decision variables that was derived by Gong and Tuson (2007) from the very successful classic differential evolution (DE) for continuous optimization. We show that unlike most other optimization paradigms, it is stable in the sense that neutral bit values are sampled with probability close to 1/2 for a long time. This is generally a desirable property, however, it makes it harder to find the optima for decision variables with small influence on the objective function. This can result in an optimization time exponential in the dimension when optimizing simple symmetric functions like OneMax. On the positive side, BDE quickly detects and optimizes the most important decision variables. For example, dominant bits converge to the optimal value in time logarithmic in the population size. This enables BDE to optimize the most important bits very fast. Overall, our results indicate that BDE is an interesting optimization paradigm having characteristics significantly different from classic evolutionary algorithms or estimation-of-distribution algorithms (EDAs). On the technical side, we observe that the strong stochastic dependencies in the random experiment describing a run of BDE prevent us from proving all desired results with the mathematical rigor that was successfully used in the analysis of other evolutionary algorithms. Inspired by mean-field approaches in statistical physics we propose a more independent variant of BDE, show experimentally its similarity to BDE, and prove some statements rigorously only for the independent variant. Such a semi-rigorous approach might be interesting for other problems in evolutionary computation where purely mathematical methods failed so far.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
[2017YFC0804003] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; National Natural Science Foundation of China[61702297] ; [2016251]
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:000501614300006
出版者
EI入藏号
20193507379308
EI主题词
Decision Making ; Optimization ; Population Statistics ; Statistical Physics ; Stochastic Systems
EI分类号
Management:912.2 ; Optimization Techniques:921.5 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85071401480
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44077
专题工学院_计算机科学与工程系
作者单位
1.Laboratoire d'Informatique (LIX), CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France
2.Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Doerr,Benjamin,Zheng,Weijie. Working principles of binary differential evolution[J]. THEORETICAL COMPUTER SCIENCE,2020,801:110-142.
APA
Doerr,Benjamin,&Zheng,Weijie.(2020).Working principles of binary differential evolution.THEORETICAL COMPUTER SCIENCE,801,110-142.
MLA
Doerr,Benjamin,et al."Working principles of binary differential evolution".THEORETICAL COMPUTER SCIENCE 801(2020):110-142.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Doerr-2020-Working p(1174KB)----暂不开放--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
百度学术
百度学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
必应学术
必应学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Doerr-2020-Working principles of binary differ.pdf
格式: Adobe PDF
文件名: Doerr-2020-Working principles of binary differ.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。