题名 | High-precision computation of the weak Galerkin methods for the fourth-order problem |
作者 | |
通讯作者 | Zhao,Wenju |
发表日期 | 2019
|
DOI | |
发表期刊 | |
ISSN | 1017-1398
|
EISSN | 1572-9265
|
卷号 | 84期号:1页码:181-205 |
摘要 | The weak Galerkin form of the finite element method, requiring only C basis function, is applied to the biharmonic equation. The computational procedure is thoroughly considered. Local orthogonal bases on triangulations are constructed using various sets of interpolation points with the Gram-Schmidt or Levenberg-Marquardt methods. Comparison and high-precision computations are carried out, and convergence rates are provided up to degree 11 for L, 10 for H, and 9 for H, suggesting that the algorithm is useful for a variety of computations. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | US Air Force Office of Scientific Research[FA9550-15-1-0001]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000528979000008
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85068334520
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44100 |
专题 | 理学院_数学系 |
作者单位 | 1.Department of MathematicsVirginia Polytechnic Institute and State University,Blacksburg,24061,United States 2.Department of Scientific ComputingFlorida State University,Tallahassee,32304,United States 3.Department of MathematicsSouthern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Burkardt,John,Gunzburger,Max,Zhao,Wenju. High-precision computation of the weak Galerkin methods for the fourth-order problem[J]. NUMERICAL ALGORITHMS,2019,84(1):181-205.
|
APA |
Burkardt,John,Gunzburger,Max,&Zhao,Wenju.(2019).High-precision computation of the weak Galerkin methods for the fourth-order problem.NUMERICAL ALGORITHMS,84(1),181-205.
|
MLA |
Burkardt,John,et al."High-precision computation of the weak Galerkin methods for the fourth-order problem".NUMERICAL ALGORITHMS 84.1(2019):181-205.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论