中文版 | English
题名

Motor Skills Learning and Generalization with Adapted Curvilinear Gaussian Mixture Model

作者
通讯作者Leng,Yuquan
发表日期
2019
DOI
发表期刊
ISSN
0921-0296
EISSN
1573-0409
卷号96期号:3-4页码:457-475
摘要
This paper is intended to solve the motor skills learning, representation and generalization problems in robot imitation learning. To this end, we present an Adapted Curvilinear Gaussian Mixture Model (AdC-GMM), which is a general extension of the GMM. The proposed model can encode data more compactly. More critically, it is inherently suitable for representing data with strong non-linearity. To infer the parameters of this model, a Cross Entropy Optimization (CEO) algorithm is proposed, where the cross entropy loss of the training data is minimized. Compared with the traditional Expectation Maximization (EM) algorithm, the CEO can automatically infer the optimal number of components. Finally, the generalized trajectories are retrieved by an Adapted Curvilinear Gaussian Mixture Regression (AdC-GMR) model. To encode observations from different frames, the sophisticated task parameterization (TP) technique is introduced. All above proposed algorithms are verified by comprehensive tasks. The CEO is evaluated by a hand writing task. Another goal-directed reaching task is used to evaluate the AdC-GMM and AdC-GMR algorithm. A novel hammer-over-a-nail task is designed to verify the task parameterization technique. Experimental results demonstrate the proposed CEO is superior to the EM in terms of encoding accuracy and the AdC-GMM can achieve more compact representation by reducing the number of components by up to 50%. In addition, the trajectory retrieved by the AdC-GMR is smoother and the approximation error is comparable to the Gaussian process regression (GPR) even far fewer parameters need to be estimated. Because of this, the AdC-GMR is much faster than the GPR. Finally, simulation experiments on the hammer-over-a-nail task demonstrates the proposed methods can be deployed and used in real-world applications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Computer Science ; Robotics
WOS类目
Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:000500870500010
出版者
EI入藏号
20191106627388
EI主题词
Encoding (symbols) ; Entropy ; Gaussian distribution ; Hammers ; Image segmentation ; Maximum principle ; Parameter estimation
EI分类号
Small Tools, Unpowered:605.2 ; Thermodynamics:641.1 ; Data Processing and Image Processing:723.2 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85062776074
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44140
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.State Key Laboratory of RoboticsShenyang Institute of AutomationChinese Academy of Sciences,Shenyang,110016,China
2.Institutes for Robotics and Intelligent ManufacturingChinese Academy of Sciences,Shenyang,110016,China
3.University of Chinese Academy of Sciences,Beijing,100049,China
4.Southern University of Science and Technology,Shenzhen,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Huiwen,Leng,Yuquan. Motor Skills Learning and Generalization with Adapted Curvilinear Gaussian Mixture Model[J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,2019,96(3-4):457-475.
APA
Zhang,Huiwen,&Leng,Yuquan.(2019).Motor Skills Learning and Generalization with Adapted Curvilinear Gaussian Mixture Model.JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,96(3-4),457-475.
MLA
Zhang,Huiwen,et al."Motor Skills Learning and Generalization with Adapted Curvilinear Gaussian Mixture Model".JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 96.3-4(2019):457-475.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zhang-2019-Motor Ski(3525KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Huiwen]的文章
[Leng,Yuquan]的文章
百度学术
百度学术中相似的文章
[Zhang,Huiwen]的文章
[Leng,Yuquan]的文章
必应学术
必应学术中相似的文章
[Zhang,Huiwen]的文章
[Leng,Yuquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。