中文版 | English
题名

A hybrid non-invasive method for the classification of Amputee’s hand and wrist movements

作者
通讯作者Li,Guanglin
DOI
发表日期
2019
ISSN
1680-0737
会议录名称
卷号
64
页码
161-166
会议地点
Haikou, China
出版者
摘要
The quest to develop dexterous artificial arm which supports multiple degrees of freedom for amputees has attracted a lot of study interest in the last few decades. The outcome of some of the studies had identified surface Electromyography (EMG) as the most commonly used biological signal in predicting the motion intention of an amputee. Different EMG based control methods for multifunctional prosthesis have been proposed and investigated in a number of previous studies. However, no any multifunctional prostheses are clinically available yet. One of the possible reasons would be that the residual muscles after amputations might not produce sufficient EMG signals for movement classifications. In this study, we proposed to use electroencephalography (EEG) signals recorded from the scalp of an amputee as additional signals for motion identifications. The performance of a hybrid scheme based on the combination of EMG and EEG signals in identifying different hand and wrist movements was evaluated in one transhumeral amputee. Our pilot results showed that the proposed hybrid method increased the classification accuracy in identifying different hand and wrist movements of the amputee. This suggests that the proposed method may have potential to improve the control of multifunctional prostheses.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Chinese Academy of Sciences[] ; [#JCYJ20130402113127532] ; National Basic Research Program of China (973 Program)[2013CB329505] ; National Natural Science Foundation of China[61135004]
EI入藏号
20190206368403
EI主题词
Artificial limbs ; Degrees of freedom (mechanics) ; Electroencephalography ; Electrophysiology ; Noninvasive medical procedures ; Palmprint recognition
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Prosthetics:462.4 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Mechanics:931.1
Scopus记录号
2-s2.0-85059735993
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44146
专题生命科学学院_生物系
生命科学学院
作者单位
1.Key Laboratory of Human-Machine Intelligence-Synergy SystemsChinese Academy of SciencesShenzhen Institutes of Advanced Technology,Shenzhen,518055,China
2.Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences,Shenzhen,518055,China
3.Department of BiologySouth University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Samuel,Oluwarotimi Williams,Li,Xiangxin,Zhang,Xu,等. A hybrid non-invasive method for the classification of Amputee’s hand and wrist movements[C]:Springer Verlag,2019:161-166.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Samuel,Oluwarotimi Williams]的文章
[Li,Xiangxin]的文章
[Zhang,Xu]的文章
百度学术
百度学术中相似的文章
[Samuel,Oluwarotimi Williams]的文章
[Li,Xiangxin]的文章
[Zhang,Xu]的文章
必应学术
必应学术中相似的文章
[Samuel,Oluwarotimi Williams]的文章
[Li,Xiangxin]的文章
[Zhang,Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。