题名 | Deep Reinforcement Learning for General Video Game AI |
作者 | |
DOI | |
发表日期 | 2018-10-11
|
ISSN | 2325-4270
|
EISSN | 2325-4289
|
ISBN | 978-1-5386-4360-0
|
会议录名称 | |
卷号 | 2018-August
|
页码 | 1-8
|
会议日期 | 14-17 Aug. 2018
|
会议地点 | Maastricht, Netherlands
|
出版者 | |
摘要 | The General Video Game AI (GVGAI) competition and its associated software framework provides a way of benchmarking AI algorithms on a large number of games written in a domain-specific description language. While the competition has seen plenty of interest, it has so far focused on online planning, providing a forward model that allows the use of algorithms such as Monte Carlo Tree Search. In this paper, we describe how we interface GVGAI to the OpenAI Gym environment, a widely used way of connecting agents to reinforcement learning problems. Using this interface, we characterize how widely used implementations of several deep reinforcement learning algorithms fare on a number of GVGAI games. We further analyze the results to provide a first indication of the relative difficulty of these games relative to each other, and relative to those in the Arcade Learning Environment under similar conditions. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] ; [来源记录] |
收录类别 | |
资助项目 | Ministry of Science and Technology of the People's Republic of China[2017YFC0804003]
|
EI入藏号 | 20184706125304
|
EI主题词 | Artificial intelligence
; Computer aided instruction
; Computer programming
; Deep learning
; Human computer interaction
; Learning algorithms
|
EI分类号 | Computer Software, Data Handling and Applications:723
|
Scopus记录号 | 2-s2.0-85056836621
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8490422 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44194 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.New York University, ,New York,United States 2.Southern University of Science and Technology, ,Shenzhen,China 3.Queen Mary University of London, ,London,United Kingdom |
推荐引用方式 GB/T 7714 |
Torrado,Ruben Rodriguez,Bontrager,Philip,Togelius,Julian,et al. Deep Reinforcement Learning for General Video Game AI[C]:IEEE Computer Society,2018:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@CIG.2018.849(580KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论