中文版 | English
题名

Deeproad: GaN-based metamorphic testing and input validation framework for autonomous driving systems

作者
通讯作者Zhang,Yuqun
DOI
发表日期
2018-09-03
ISSN
1527-1366
ISBN
978-1-7281-4376-7
会议录名称
页码
132-142
会议日期
3-7 Sept. 2018
会议地点
Montpellier, France
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
While Deep Neural Networks (DNNs) have established the fundamentals of image-based autonomous driving systems, they may exhibit erroneous behaviors and cause fatal accidents. To address the safety issues in autonomous driving systems, a recent set of testing techniques have been designed to automatically generate artificial driving scenes to enrich test suite, e.g., generating new input images transformed from the original ones. However, these techniques are insufficient due to two limitations: first, many such synthetic images often lack diversity of driving scenes, and hence compromise the resulting efficacy and reliability. Second, for machine-learning-based systems, a mismatch between training and application domain can dramatically degrade system accuracy, such that it is necessary to validate inputs for improving system robustness. In this paper, we propose DeepRoad, an unsupervised DNN-based framework for automatically testing the consistency of DNN-based autonomous driving systems and online validation. First, DeepRoad automatically synthesizes large amounts of diverse driving scenes without using image transformation rules (e.g. scale, shear and rotation). In particular, DeepRoad is able to produce driving scenes with various weather conditions (including those with rather extreme conditions) by applying Generative Adversarial Networks (GANs) along with the corresponding real-world weather scenes. Second, DeepRoad utilizes metamorphic testing techniques to check the consistency of such systems using synthetic images. Third, DeepRoad validates input images for DNN-based systems by measuring the distance of the input and training images using their VGGNet features. We implement DeepRoad to test three well-recognized DNN-based autonomous driving systems in Udacity self-driving car challenge. The experimental results demonstrate that DeepRoad can detect thousands of inconsistent behaviors for these systems, and effectively validate input images to potentially enhance the system robustness as well.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Ministry of Science and Technology of the People's Republic of China[2017YFC0804002]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000553784500016
EI入藏号
20184706087442
EI主题词
Automatic test pattern generation ; Deep neural networks ; Gallium nitride ; III-V semiconductors ; Online systems ; Safety testing ; Software testing
EI分类号
Digital Computers and Systems:722.4 ; Computer Applications:723.5 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85056509092
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9000040
引用统计
被引频次[WOS]:396
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44207
专题工学院_计算机科学与工程系
作者单位
1.University of Texas, ,Austin,United States
2.Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,China
3.University of Texas, ,Dallas,United States
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Mengshi,Zhang,Yuqun,Zhang,Lingming,et al. Deeproad: GaN-based metamorphic testing and input validation framework for autonomous driving systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Association for Computing Machinery, Inc,2018:132-142.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Mengshi]的文章
[Zhang,Yuqun]的文章
[Zhang,Lingming]的文章
百度学术
百度学术中相似的文章
[Zhang,Mengshi]的文章
[Zhang,Yuqun]的文章
[Zhang,Lingming]的文章
必应学术
必应学术中相似的文章
[Zhang,Mengshi]的文章
[Zhang,Yuqun]的文章
[Zhang,Lingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。