题名 | Automatic Modulation Recognition Using Deep Learning Architectures |
作者 | |
通讯作者 | Gong,Yi |
DOI | |
发表日期 | 2018-08-24
|
会议名称 | IEEE Workshop on Signal Processing Advances in Wireless Communications
|
ISSN | 1948-3252
|
ISBN | 978-1-5386-3513-1
|
会议录名称 | |
卷号 | 2018-June
|
页码 | 1-5
|
会议日期 | 25 June 2018 - 28 June 2018
|
会议地点 | Greece · Kalamata
|
摘要 | In this paper, we present an automatic modulation recognition framework for the detection of radio signals in a communication system. The framework considers both a deep convolutional neural network (CNN) and a long short term memory network. Further, we propose a pre-processing signal representation that combines the in-phase, quadrature and fourth-order statistics of the modulated signals. The presented data representation allows our CNN and LSTM models to achieve 8% improvements on our testing dataset. We compare the recognition accuracy of the proposed recognition methods with existing methods under various SNR values. Experimental results show that our methods perform better than the existing methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20183805844036
|
EI主题词 | Radio communication
; Modulation
; Convolution
; Deep neural networks
; Statistical tests
; Brain
|
EI分类号 | Biomedical Engineering:461.1
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Radio Systems and Equipment:716.3
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85053468131
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446021 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44215 |
专题 | 南方科技大学 工学院_电子与电气工程系 前沿与交叉科学研究院 |
作者单位 | Southern University of Science and Technology, ,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Meng,Zeng,Yuan,Han,Zidong,et al. Automatic Modulation Recognition Using Deep Learning Architectures[C],2018:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论