中文版 | English
题名

Addictive brain-network identification by spatial attention recurrent network with feature selection

作者
通讯作者Wang,Shuqiang
发表日期
2023-12-01
DOI
发表期刊
ISSN
2198-4018
EISSN
2198-4026
卷号10期号:1
摘要
Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20230313383520
EI主题词
Biomarkers ; Brain mapping ; Feature Selection ; Magnetic resonance imaging ; Recurrent neural networks
EI分类号
Biomedical Engineering:461.1 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85146118218
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442555
专题南方科技大学
作者单位
1.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
2.University of Chinese Academy of Sciences,Beijing,100049,China
3.Southern University of Science and Technology,Shenzhen,518055,China
4.Faculty of Engineering,University of Porto,Porto,0035122,Portugal
推荐引用方式
GB/T 7714
Gong,Changwei,Chen,Xinyi,Mughal,Bushra,et al. Addictive brain-network identification by spatial attention recurrent network with feature selection[J]. Brain Informatics,2023,10(1).
APA
Gong,Changwei,Chen,Xinyi,Mughal,Bushra,&Wang,Shuqiang.(2023).Addictive brain-network identification by spatial attention recurrent network with feature selection.Brain Informatics,10(1).
MLA
Gong,Changwei,et al."Addictive brain-network identification by spatial attention recurrent network with feature selection".Brain Informatics 10.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gong,Changwei]的文章
[Chen,Xinyi]的文章
[Mughal,Bushra]的文章
百度学术
百度学术中相似的文章
[Gong,Changwei]的文章
[Chen,Xinyi]的文章
[Mughal,Bushra]的文章
必应学术
必应学术中相似的文章
[Gong,Changwei]的文章
[Chen,Xinyi]的文章
[Mughal,Bushra]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。