中文版 | English
题名

Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network

作者
通讯作者Huang,Changwu
发表日期
2023-05-01
DOI
发表期刊
ISSN
0888-3270
EISSN
1096-1216
卷号190
摘要

Fatigue is one of the most significant failure modes in structural and mechanical design. As for wind engineering, the fatigue issue on wind turbine towers is more critical since it concerns not only the structural safety but also the power production of the wind turbine. On the one hand, due to the complex fluid–solid interaction and the sophisticated control system of the wind turbine, it is impossible to predict the probability of fatigue-induced failure on wind turbine towers by analytical method. On the other hand, the structural reliability methods based on a numerical approach are usually time-consuming. To overcome these drawbacks, this work firstly proposes a probabilistic fatigue analysis framework to estimate the fatigue damage of wind turbine tower based on numerical simulations. Then, to reduce the computational cost of numerical approach, a residual neural network (ResNet)-assisted fatigue estimation approach is designed for the assessment of long-term fatigue loads under the proposed probabilistic fatigue analysis framework. The proposed probabilistic fatigue analysis framework estimates the cumulative fatigue damage on the cross-section of wind towers in a probabilistic pattern. The designed surrogate-assisted approach learns a model to approximate the relationship between wind speed and the fatigue damage. Then, this surrogate model can be used to predict fatigue damage under different wind speed so that a large number of simulation can be replaced by model prediction. Consequently, the efficiency of the proposed probabilistic fatigue analysis method can be significantly improved. Our proposed method is validated by numerical studies with a state-of-the-art wind turbine and has been applied in a wind turbine design with real-world wind loads.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Engineering
WOS类目
Engineering, Mechanical
WOS记录号
WOS:000924511600001
出版者
EI入藏号
20230413418864
EI主题词
Failure (mechanical) ; Fatigue damage ; Forecasting ; Probability distributions ; Structural analysis ; Towers ; Wind speed ; Wind turbines
EI分类号
Towers:402.4 ; Structural Design, General:408.1 ; Wind Power (Before 1993, use code 611 ):615.8 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Materials Science:951
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85146424239
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442567
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen PowerOak Newener Co.,Ltd,Shenzhen,518055,China
2.Laboratory of Mechanics of Normandy (LMN),INSA Rouen Normandie,Rouen,76000,France
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Bai,Hao,Shi,Lujie,Aoues,Younes,et al. Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,2023,190.
APA
Bai,Hao,Shi,Lujie,Aoues,Younes,Huang,Changwu,&Lemosse,Didier.(2023).Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network.MECHANICAL SYSTEMS AND SIGNAL PROCESSING,190.
MLA
Bai,Hao,et al."Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network".MECHANICAL SYSTEMS AND SIGNAL PROCESSING 190(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Estimation of probab(2194KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai,Hao]的文章
[Shi,Lujie]的文章
[Aoues,Younes]的文章
百度学术
百度学术中相似的文章
[Bai,Hao]的文章
[Shi,Lujie]的文章
[Aoues,Younes]的文章
必应学术
必应学术中相似的文章
[Bai,Hao]的文章
[Shi,Lujie]的文章
[Aoues,Younes]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。