中文版 | English
题名

Ensemble Diverse Hypotheses and Knowledge Distillation for Unsupervised Cross-subject Adaptation

作者
通讯作者Fu,Chenglong
发表日期
2023-05-01
DOI
发表期刊
ISSN
1566-2535
EISSN
1872-6305
卷号93页码:268-281
摘要

Human intent prediction (HIP) and human activity recognition (HAR) are important for human–robot interactions. However, human–robot interface signals are user-dependent. A classifier trained on labeled source subjects performs poorly on unlabeled target subjects. Besides, previous methods used a single learner, which may only learn a subset of features and degrade their performance on target subjects. Last, HIP and HAR require real-time computing on edge devices whose computational capabilities limit the model size. To address these issues, this paper designs an ensemble diverse hypotheses (EDH) and knowledge distillation (EDHKD) method. EDH mitigates the cross-subject divergence by training feature generators to minimize the upper bound of the classification discrepancy among multiple classifiers. EDH also maximizes the discrepancy among multiple feature generators to learn diverse and complete features. After training EDH, a lightweight student network (EDHKD) distills the knowledge from EDH to a single feature generator and classifier to significantly decrease the model size but remain accurate. The performance of EDHKD is theoretically demonstrated and experimentally validated. Results show that EDH can learn diverse features and adapt well to unknown target subjects. With only soft labels provided by EDH, the student network (EDHKD) can inherit the knowledge learned by EDH and classify unlabeled target data of a 2D moon dataset and two human locomotion datasets with the accuracy at 96.9%, 94.4%, and 97.4%, respectively, in no longer than 1 millisecond. Compared to the benchmark method, EDHKD lifts the target-domain classification accuracy by 1.3% and 7.1% in the two human locomotion datasets. EDHKD also stabilizes learning curves. Therefore, EDHKD significantly increases the generalization ability and efficiency of the HIP and HAR.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001012832400001
出版者
EI入藏号
20230213380851
EI主题词
Classification (of information) ; Human robot interaction ; Pattern recognition ; Wearable technology
EI分类号
Information Theory and Signal Processing:716.1 ; Robotics:731.5 ; Chemical Operations:802.3 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85146055105
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442568
专题工学院_机械与能源工程系
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mechanical Engineering,The University of British Columbia,Vancouver,Canada
4.Department of Electrical and Computer Engineering,The University of British Columbia,Vancouver,Canada
第一作者单位机械与能源工程系;  南方科技大学
通讯作者单位机械与能源工程系;  南方科技大学
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang,Kuangen,Chen,Jiahong,Wang,Jing,et al. Ensemble Diverse Hypotheses and Knowledge Distillation for Unsupervised Cross-subject Adaptation[J]. Information Fusion,2023,93:268-281.
APA
Zhang,Kuangen.,Chen,Jiahong.,Wang,Jing.,Chen,Xinxing.,Leng,Yuquan.,...&Fu,Chenglong.(2023).Ensemble Diverse Hypotheses and Knowledge Distillation for Unsupervised Cross-subject Adaptation.Information Fusion,93,268-281.
MLA
Zhang,Kuangen,et al."Ensemble Diverse Hypotheses and Knowledge Distillation for Unsupervised Cross-subject Adaptation".Information Fusion 93(2023):268-281.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023- Information Fu(3674KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
百度学术
百度学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
必应学术
必应学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。