中文版 | English
题名

Toward a blind image quality evaluator in the wild by learning beyond human opinion scores

作者
通讯作者Zhang,Jianguo
发表日期
2023-05-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号137
摘要
Nowadays, most existing blind image quality assessment (BIQA) models inthewild heavily rely on human ratings, which are extraordinarily labor-expensive to collect. Here, we propose an opinion−free BIQA method that learns from multiple annotators to assess the perceptual quality of images captured in the wild. Specifically, we first synthesize distorted images based on the pristine counterparts. We then randomly assemble a set of image pairs from the synthetic images, and use a group of IQA models to assign pseudo-binary labels for each pair indicating which image has higher quality as the supervisory signal. Based on the newly established pseudo-labeled dataset, we train a deep neural network (DNN)-based BIQA model to rank the perceptual quality, optimized for consistency with the binary rank labels. Since there exists domain shift, e.g., distortion shift and content shift, between the synthetic and in-the-wild images, we leverage two ways to alleviate this issue. First, the simulated distortions should be similar to authentic distortions as much as possible. Second, an unsupervised domain adaptation (UDA) module is further applied to encourage learning domain-invariant features between two domains. Extensive experiments demonstrate the effectiveness of our proposed opinion−free BIQA model, yielding SOTA performance in terms of correlation with human opinion scores, as well as gMAD competition. Codes will be made publicly available upon acceptance.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2021YFF1200800] ; National Natural Science Foundation of China[62276121]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000925885600001
出版者
EI入藏号
20230213377379
EI主题词
Deep neural networks
EI分类号
Ergonomics and Human Factors Engineering:461.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85145969749
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442569
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Computer Science,City University of Hong Kong,Hong Kong
3.School of Information Management,Jiangxi University of Finance and Economics,Nanchang,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang,Zhihua,Tang,Zhi Ri,Zhang,Jianguo,et al. Toward a blind image quality evaluator in the wild by learning beyond human opinion scores[J]. PATTERN RECOGNITION,2023,137.
APA
Wang,Zhihua,Tang,Zhi Ri,Zhang,Jianguo,&Fang,Yuming.(2023).Toward a blind image quality evaluator in the wild by learning beyond human opinion scores.PATTERN RECOGNITION,137.
MLA
Wang,Zhihua,et al."Toward a blind image quality evaluator in the wild by learning beyond human opinion scores".PATTERN RECOGNITION 137(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhihua]的文章
[Tang,Zhi Ri]的文章
[Zhang,Jianguo]的文章
百度学术
百度学术中相似的文章
[Wang,Zhihua]的文章
[Tang,Zhi Ri]的文章
[Zhang,Jianguo]的文章
必应学术
必应学术中相似的文章
[Wang,Zhihua]的文章
[Tang,Zhi Ri]的文章
[Zhang,Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。