题名 | Analysis of noisy evolutionary optimization when sampling fails |
作者 | |
发表日期 | 2018-07-02
|
DOI | |
发表期刊 | |
ISSN | 0178-4617
|
EISSN | 1432-0541
|
卷号 | 83期号:4页码:1507-1514 |
摘要 | In noisy evolutionary optimization, sampling is a common strategy to deal with noise, which evaluates the fitness of a solution multiple times (called sample size) independently and then uses the average to approximate the true fitness. Previous studies mainly focused on the empirical design of efficient sampling strategies, and the few theoretical analyses mainly proved the effectiveness of sampling with a fixed sample size in some situations. There are many fundamental theoretical issues to be addressed. In this paper, we first investigate the effect of sample size. By analyzing the (1+1)-EA on noisy LeadingOnes, we show that as the sample size increases, the running time can reduce from exponential to polynomial, but then return to exponential. This discloses that a proper sample size is crucial in practice. Then, we investigate what other strategies can work when sampling with any fixed sample size fails. By two illustrative examples, we prove that using parent populations can be better, and if using parent populations is also ineffective, adaptive sampling (i.e., sampling with an adaptive sample size) can work. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | European Society of Surgical Oncology[2016QNRC001]
; Ministry of Science and Technology[2017YFC0804003]
; National Natural Science Foundation of China[61603367]
; Royal Society[NA150123]
; Innovation and Technology Commission[ZDSYS201703031748284]
|
WOS研究方向 | Computer Science
; Mathematics
|
WOS类目 | Computer Science, Software Engineering
; Mathematics, Applied
|
WOS记录号 | WOS:000631041800003
|
出版者 | |
EI入藏号 | 20183105630298
|
EI主题词 | Computational complexity
; Evolutionary algorithms
; Optimization
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Optimization Techniques:921.5
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85050612434
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44258 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.University of Science and Technology of China, ,Hefei,China 2.Nanjing University, ,Nanjing,China 3.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, ,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Qian,Chao,Bian,Chao,Yu,Yang,et al. Analysis of noisy evolutionary optimization when sampling fails[J]. ALGORITHMICA,2018,83(4):1507-1514.
|
APA |
Qian,Chao,Bian,Chao,Yu,Yang,Tang,Ke,&Yao,Xin.(2018).Analysis of noisy evolutionary optimization when sampling fails.ALGORITHMICA,83(4),1507-1514.
|
MLA |
Qian,Chao,et al."Analysis of noisy evolutionary optimization when sampling fails".ALGORITHMICA 83.4(2018):1507-1514.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1145@3205455.3205(342KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论