中文版 | English
题名

Analysis of noisy evolutionary optimization when sampling fails

作者
发表日期
2018-07-02
DOI
发表期刊
ISSN
0178-4617
EISSN
1432-0541
卷号83期号:4页码:1507-1514
摘要
In noisy evolutionary optimization, sampling is a common strategy to deal with noise, which evaluates the fitness of a solution multiple times (called sample size) independently and then uses the average to approximate the true fitness. Previous studies mainly focused on the empirical design of efficient sampling strategies, and the few theoretical analyses mainly proved the effectiveness of sampling with a fixed sample size in some situations. There are many fundamental theoretical issues to be addressed. In this paper, we first investigate the effect of sample size. By analyzing the (1+1)-EA on noisy LeadingOnes, we show that as the sample size increases, the running time can reduce from exponential to polynomial, but then return to exponential. This discloses that a proper sample size is crucial in practice. Then, we investigate what other strategies can work when sampling with any fixed sample size fails. By two illustrative examples, we prove that using parent populations can be better, and if using parent populations is also ineffective, adaptive sampling (i.e., sampling with an adaptive sample size) can work.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
European Society of Surgical Oncology[2016QNRC001] ; Ministry of Science and Technology[2017YFC0804003] ; National Natural Science Foundation of China[61603367] ; Royal Society[NA150123] ; Innovation and Technology Commission[ZDSYS201703031748284]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Software Engineering ; Mathematics, Applied
WOS记录号
WOS:000631041800003
出版者
EI入藏号
20183105630298
EI主题词
Computational complexity ; Evolutionary algorithms ; Optimization
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Optimization Techniques:921.5
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85050612434
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44258
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Science and Technology of China, ,Hefei,China
2.Nanjing University, ,Nanjing,China
3.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, ,Shenzhen,China
推荐引用方式
GB/T 7714
Qian,Chao,Bian,Chao,Yu,Yang,et al. Analysis of noisy evolutionary optimization when sampling fails[J]. ALGORITHMICA,2018,83(4):1507-1514.
APA
Qian,Chao,Bian,Chao,Yu,Yang,Tang,Ke,&Yao,Xin.(2018).Analysis of noisy evolutionary optimization when sampling fails.ALGORITHMICA,83(4),1507-1514.
MLA
Qian,Chao,et al."Analysis of noisy evolutionary optimization when sampling fails".ALGORITHMICA 83.4(2018):1507-1514.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1145@3205455.3205(342KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Chao]的文章
[Bian,Chao]的文章
[Yu,Yang]的文章
百度学术
百度学术中相似的文章
[Qian,Chao]的文章
[Bian,Chao]的文章
[Yu,Yang]的文章
必应学术
必应学术中相似的文章
[Qian,Chao]的文章
[Bian,Chao]的文章
[Yu,Yang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3205455.3205643.pdf
格式: Adobe PDF
文件名: 10.1145@3205455.3205643.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。