中文版 | English
题名

Unsupervised multilayer fuzzy neural networks for image clustering

作者
通讯作者Ishibuchi,Hisao
发表日期
2023-04-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号622页码:682-709
摘要
Currently, labelling a large number of images is still a very challenging task. To tackle the problem of unlabelled data, unsupervised learning has been proposed. Among many unsupervised learning algorithms, K-means is the most popular algorithm. However, in a low-dimensional space, fuzzy c-means, which is more robust and less sensitive to initialization, has several advantages over K-means clustering. On the other hand, stacked convolutional pooling structures and manifold representation play pivotal roles in image clustering. In this paper, we propose an unsupervised multilayer fuzzy neural network for image clustering that unifies fuzzy systems, multilayer convolutional structures and manifold representation. The main contributions are as follows. First, we extend fuzzy systems to unsupervised tasks by introducing manifold representation, which expands the applications of fuzzy systems. Next, we propose the idea of using only a small number of attributes to compute firing strengths. This is implemented to prevent the firing strengths from falling to zero. Finally, randomly generated convolutional weights are used to extract features, which is a good choice for data without labels. It is demonstrated on a wide range of image datasets that the proposed approach is competitive with existing fuzzy and nonfuzzy clustering algorithms.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Key Research and Development Program of Shaanxi Province["2021GXLH-Z-097","2021GY-025"] ; National Natural Science Foundation of China[61876075] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Fundamental Research Funds for the Central Universities[3132019344] ; Leading Scholar Grant, Dalian Maritime University[00253007]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000900836600002
出版者
EI入藏号
20225013247020
EI主题词
Convolution ; Fuzzy inference ; Fuzzy systems ; K-means clustering ; Learning algorithms ; Multilayer neural networks ; Multilayers ; Unsupervised learning
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85143752296
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442611
专题工学院_计算机科学与工程系
作者单位
1.School of Software Engineering,Xi'an Jiaotong University,Xi'an,710049,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,China
4.Institute of Artificial Intelligence and Marine Robotics,College of Marine Electrical Engineering,Dalian Maritime University,Dalian,116026,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang,Yifan,Ishibuchi,Hisao,Er,Meng Joo,et al. Unsupervised multilayer fuzzy neural networks for image clustering[J]. INFORMATION SCIENCES,2023,622:682-709.
APA
Wang,Yifan,Ishibuchi,Hisao,Er,Meng Joo,&Zhu,Jihua.(2023).Unsupervised multilayer fuzzy neural networks for image clustering.INFORMATION SCIENCES,622,682-709.
MLA
Wang,Yifan,et al."Unsupervised multilayer fuzzy neural networks for image clustering".INFORMATION SCIENCES 622(2023):682-709.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yifan]的文章
[Ishibuchi,Hisao]的文章
[Er,Meng Joo]的文章
百度学术
百度学术中相似的文章
[Wang,Yifan]的文章
[Ishibuchi,Hisao]的文章
[Er,Meng Joo]的文章
必应学术
必应学术中相似的文章
[Wang,Yifan]的文章
[Ishibuchi,Hisao]的文章
[Er,Meng Joo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。