题名 | Model-free forecasting of partially observable spatiotemporally chaotic systems |
作者 | |
通讯作者 | Wan,Minping |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 0893-6080
|
EISSN | 1879-2782
|
卷号 | 160页码:297-305 |
摘要 | Reservoir computing is a powerful tool for forecasting turbulence because its simple architecture has the computational efficiency to handle high-dimensional systems. Its implementation, however, often requires full state-vector measurements and knowledge of the system nonlinearities. We use nonlinear projector functions to expand the system measurements to a high dimensional space and then feed them to a reservoir to obtain forecasts. We demonstrate the application of such reservoir computing networks on spatiotemporally chaotic systems, which model several features of turbulence. We show that using radial basis functions as nonlinear projectors enables complex system nonlinearities to be captured robustly even with only partial observations and without knowing the governing equations. Finally, we show that when measurements are sparse or incomplete and noisy, such that even the governing equations become inaccurate, our networks can still produce reasonably accurate forecasts, thus paving the way towards model-free forecasting of practical turbulent systems. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China["12002147","12050410247","11988102"]
; Shenzhen Science and Technology Program[KQTD20180411143441009]
; Department of Science and Technology of Guangdong Province[2020B1212030001]
; Research Grants Council of Hong Kong["16210419","16200220","16215521"]
|
WOS研究方向 | Computer Science
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Neurosciences
|
WOS记录号 | WOS:000938693400001
|
出版者 | |
EI入藏号 | 20230613550189
|
EI主题词 | Chaotic systems
; Computational efficiency
; Control nonlinearities
; Forecasting
; Nonlinear equations
; Radial basis function networks
; Turbulence models
|
EI分类号 | Artificial Intelligence:723.4
; Control Systems:731.1
; Systems Science:961
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85147259261
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/442625 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China 3.Department of Mechanical and Aerospace Engineering,Hong Kong University of Science and Technology,Hong Kong 4.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Hong Kong University of Science and Technology,Hong Kong 5.Eastern Institute for Advanced Study,Ningbo,315200,China 6.Jiaxing Research Institute,Southern University of Science and Technology,Jiaxing,314031,China |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Gupta,Vikrant,Li,Larry K.B.,Chen,Shiyi,et al. Model-free forecasting of partially observable spatiotemporally chaotic systems[J]. NEURAL NETWORKS,2023,160:297-305.
|
APA |
Gupta,Vikrant,Li,Larry K.B.,Chen,Shiyi,&Wan,Minping.(2023).Model-free forecasting of partially observable spatiotemporally chaotic systems.NEURAL NETWORKS,160,297-305.
|
MLA |
Gupta,Vikrant,et al."Model-free forecasting of partially observable spatiotemporally chaotic systems".NEURAL NETWORKS 160(2023):297-305.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论