中文版 | English
题名

Model-free forecasting of partially observable spatiotemporally chaotic systems

作者
通讯作者Wan,Minping
发表日期
2023-03-01
DOI
发表期刊
ISSN
0893-6080
EISSN
1879-2782
卷号160页码:297-305
摘要
Reservoir computing is a powerful tool for forecasting turbulence because its simple architecture has the computational efficiency to handle high-dimensional systems. Its implementation, however, often requires full state-vector measurements and knowledge of the system nonlinearities. We use nonlinear projector functions to expand the system measurements to a high dimensional space and then feed them to a reservoir to obtain forecasts. We demonstrate the application of such reservoir computing networks on spatiotemporally chaotic systems, which model several features of turbulence. We show that using radial basis functions as nonlinear projectors enables complex system nonlinearities to be captured robustly even with only partial observations and without knowing the governing equations. Finally, we show that when measurements are sparse or incomplete and noisy, such that even the governing equations become inaccurate, our networks can still produce reasonably accurate forecasts, thus paving the way towards model-free forecasting of practical turbulent systems.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["12002147","12050410247","11988102"] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Department of Science and Technology of Guangdong Province[2020B1212030001] ; Research Grants Council of Hong Kong["16210419","16200220","16215521"]
WOS研究方向
Computer Science ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号
WOS:000938693400001
出版者
EI入藏号
20230613550189
EI主题词
Chaotic systems ; Computational efficiency ; Control nonlinearities ; Forecasting ; Nonlinear equations ; Radial basis function networks ; Turbulence models
EI分类号
Artificial Intelligence:723.4 ; Control Systems:731.1 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85147259261
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442625
专题工学院_力学与航空航天工程系
作者单位
1.Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mechanical and Aerospace Engineering,Hong Kong University of Science and Technology,Hong Kong
4.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Hong Kong University of Science and Technology,Hong Kong
5.Eastern Institute for Advanced Study,Ningbo,315200,China
6.Jiaxing Research Institute,Southern University of Science and Technology,Jiaxing,314031,China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Gupta,Vikrant,Li,Larry K.B.,Chen,Shiyi,et al. Model-free forecasting of partially observable spatiotemporally chaotic systems[J]. NEURAL NETWORKS,2023,160:297-305.
APA
Gupta,Vikrant,Li,Larry K.B.,Chen,Shiyi,&Wan,Minping.(2023).Model-free forecasting of partially observable spatiotemporally chaotic systems.NEURAL NETWORKS,160,297-305.
MLA
Gupta,Vikrant,et al."Model-free forecasting of partially observable spatiotemporally chaotic systems".NEURAL NETWORKS 160(2023):297-305.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gupta,Vikrant]的文章
[Li,Larry K.B.]的文章
[Chen,Shiyi]的文章
百度学术
百度学术中相似的文章
[Gupta,Vikrant]的文章
[Li,Larry K.B.]的文章
[Chen,Shiyi]的文章
必应学术
必应学术中相似的文章
[Gupta,Vikrant]的文章
[Li,Larry K.B.]的文章
[Chen,Shiyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。