题名 | An integrated machine learning model for accurate and robust prediction of superconducting critical temperature |
作者 | |
通讯作者 | Xiang,X. D.; Hu,Kailong; Lin,Xi |
发表日期 | 2022-12-05
|
DOI | |
发表期刊 | |
ISSN | 2095-4956
|
卷号 | 78页码:232-239 |
摘要 | Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process, and the correlations between the critical temperature (T) and material features are still obscure. The rise of machine learning (ML) technology provides new opportunities to speed up inefficient exploration processes, and could potentially uncover new hints on the unclear correlations. In this work, we utilize open-source materials data, ML models, and data mining methods to explore the correlation between the chemical features and T values of superconducting materials. To further improve the prediction accuracy, a new model is created by integrating three basic algorithms, showing an enhanced accuracy with the coefficient of determination (R) score of 95.9 % and root mean square error (RMSE) of 6.3 K. The average marginal contributions of material features towards T values are estimated to determine the importance of various features during prediction processes. The results suggest that the range thermal conductivity plays a critical role in T prediction among all element features. Furthermore, the integrated ML model is utilized to screen out potential twenty superconducting materials with T values beyond 50.0 K. This study provides insights towards T prediction to accelerate the exploration of potential high-T superconductors. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Fund of Science and Technology on Reactor Fuel and Materials Laboratory[JCKYS2019201074]
; Shenzhen Fundamental Research Program[JCYJ20220531095404009]
; Shenzhen Knowledge Innovation Plan - Fundamental Research (Discipline Distribution)[JCYJ20180507184623297]
|
WOS研究方向 | Chemistry
; Energy & Fuels
; Engineering
|
WOS类目 | Chemistry, Applied
; Chemistry, Physical
; Energy & Fuels
; Engineering, Chemical
|
WOS记录号 | WOS:000925361600001
|
出版者 | |
EI入藏号 | 20230213379974
|
EI主题词 | Data mining
; Forecasting
; High temperature superconductors
; Mean square error
; Temperature
; Thermal conductivity
|
EI分类号 | Thermodynamics:641.1
; High Temperature Superconducting Materials:708.3.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85146094168
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/442642 |
专题 | 理学院_物理系 工学院_材料科学与工程系 |
作者单位 | 1.School of Materials Science and Engineering,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China 2.Blockchain Development and Research Institute,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China 3.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,Heilongjiang,150001,China 4.School of Materials Science and Engineering,Harbin Institute of Technology,Harbin,Heilongjiang,150001,China 5.Department of Materials Science and Engineering & Department of Physics,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
通讯作者单位 | 物理系; 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Jingzi,Zhang,Ke,Xu,Shaomeng,et al. An integrated machine learning model for accurate and robust prediction of superconducting critical temperature[J]. Journal of Energy Chemistry,2022,78:232-239.
|
APA |
Zhang,Jingzi.,Zhang,Ke.,Xu,Shaomeng.,Li,Yi.,Zhong,Chengquan.,...&Lin,Xi.(2022).An integrated machine learning model for accurate and robust prediction of superconducting critical temperature.Journal of Energy Chemistry,78,232-239.
|
MLA |
Zhang,Jingzi,et al."An integrated machine learning model for accurate and robust prediction of superconducting critical temperature".Journal of Energy Chemistry 78(2022):232-239.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论