中文版 | English
题名

An integrated machine learning model for accurate and robust prediction of superconducting critical temperature

作者
通讯作者Xiang,X. D.; Hu,Kailong; Lin,Xi
发表日期
2022-12-05
DOI
发表期刊
ISSN
2095-4956
卷号78页码:232-239
摘要

Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process, and the correlations between the critical temperature (T) and material features are still obscure. The rise of machine learning (ML) technology provides new opportunities to speed up inefficient exploration processes, and could potentially uncover new hints on the unclear correlations. In this work, we utilize open-source materials data, ML models, and data mining methods to explore the correlation between the chemical features and T values of superconducting materials. To further improve the prediction accuracy, a new model is created by integrating three basic algorithms, showing an enhanced accuracy with the coefficient of determination (R) score of 95.9 % and root mean square error (RMSE) of 6.3 K. The average marginal contributions of material features towards T values are estimated to determine the importance of various features during prediction processes. The results suggest that the range thermal conductivity plays a critical role in T prediction among all element features. Furthermore, the integrated ML model is utilized to screen out potential twenty superconducting materials with T values beyond 50.0 K. This study provides insights towards T prediction to accelerate the exploration of potential high-T superconductors.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Fund of Science and Technology on Reactor Fuel and Materials Laboratory[JCKYS2019201074] ; Shenzhen Fundamental Research Program[JCYJ20220531095404009] ; Shenzhen Knowledge Innovation Plan - Fundamental Research (Discipline Distribution)[JCYJ20180507184623297]
WOS研究方向
Chemistry ; Energy & Fuels ; Engineering
WOS类目
Chemistry, Applied ; Chemistry, Physical ; Energy & Fuels ; Engineering, Chemical
WOS记录号
WOS:000925361600001
出版者
EI入藏号
20230213379974
EI主题词
Data mining ; Forecasting ; High temperature superconductors ; Mean square error ; Temperature ; Thermal conductivity
EI分类号
Thermodynamics:641.1 ; High Temperature Superconducting Materials:708.3.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85146094168
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/442642
专题理学院_物理系
工学院_材料科学与工程系
作者单位
1.School of Materials Science and Engineering,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China
2.Blockchain Development and Research Institute,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China
3.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,Heilongjiang,150001,China
4.School of Materials Science and Engineering,Harbin Institute of Technology,Harbin,Heilongjiang,150001,China
5.Department of Materials Science and Engineering & Department of Physics,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
通讯作者单位物理系;  材料科学与工程系
推荐引用方式
GB/T 7714
Zhang,Jingzi,Zhang,Ke,Xu,Shaomeng,et al. An integrated machine learning model for accurate and robust prediction of superconducting critical temperature[J]. Journal of Energy Chemistry,2022,78:232-239.
APA
Zhang,Jingzi.,Zhang,Ke.,Xu,Shaomeng.,Li,Yi.,Zhong,Chengquan.,...&Lin,Xi.(2022).An integrated machine learning model for accurate and robust prediction of superconducting critical temperature.Journal of Energy Chemistry,78,232-239.
MLA
Zhang,Jingzi,et al."An integrated machine learning model for accurate and robust prediction of superconducting critical temperature".Journal of Energy Chemistry 78(2022):232-239.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jingzi]的文章
[Zhang,Ke]的文章
[Xu,Shaomeng]的文章
百度学术
百度学术中相似的文章
[Zhang,Jingzi]的文章
[Zhang,Ke]的文章
[Xu,Shaomeng]的文章
必应学术
必应学术中相似的文章
[Zhang,Jingzi]的文章
[Zhang,Ke]的文章
[Xu,Shaomeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。