中文版 | English
题名

To adapt or not to adapt? Technical debt and learning driven self-adaptation for managing runtime performance

作者
DOI
发表日期
2018-03-30
会议录名称
卷号
2018-March
页码
48-55
会议地点
Merida, Mexico
出版者
摘要
Self-adaptive system (SAS) can adapt itself to optimize various key performance indicators in response to the dynamics and uncertainty in environment. In this paper, we present Debt Learning Driven Adaptation (DLDA), an framework that dynamically determines when and whether to adapt the SAS at runtime. DLDA leverages the temporal adaptation debt, a notion derived from the technical debt metaphor, to quantify the time-varying money that the SAS carries in relation to its performance and Service Level Agreements. We designed a temporal net debt driven labeling to label whether it is economically healthier to adapt the SAS (or not) in a circumstance, based on which an online machine learning classifier learns the correlation, and then predicts whether to adapt under the future circumstances. We conducted comprehensive experiments to evaluate DLDA with two different planners, using 5 online machine learning classifiers, and in comparison to 4 state-of-the-art debt-oblivious triggering approaches. The results reveal the effectiveness and superiority of DLDA according to different metrics.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Engineering and Physical Sciences Research Council[EP/J017515/1]
EI入藏号
20183205668270
EI主题词
Adaptive systems ; Artificial intelligence ; Benchmarking ; Learning systems ; Outsourcing ; Software engineering
EI分类号
Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Management:912.2
Scopus记录号
2-s2.0-85051087850
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44294
专题工学院_计算机科学与工程系
作者单位
1.Department of Computing and Technology, Nottingham Trent University, ,United Kingdom
2.CERCIA, School of Computer Science, University of Birmingham, ,United Kingdom
3.Department of Computer Science and Engineering, Southern University of Science and Technology, ,China
推荐引用方式
GB/T 7714
Chen,Tao,Bahsoon,Rami,Wang,Shuo,et al. To adapt or not to adapt? Technical debt and learning driven self-adaptation for managing runtime performance[C]:Association for Computing Machinery, Inc,2018:48-55.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1145@3184407.3184(1016KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Tao]的文章
[Bahsoon,Rami]的文章
[Wang,Shuo]的文章
百度学术
百度学术中相似的文章
[Chen,Tao]的文章
[Bahsoon,Rami]的文章
[Wang,Shuo]的文章
必应学术
必应学术中相似的文章
[Chen,Tao]的文章
[Bahsoon,Rami]的文章
[Wang,Shuo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3184407.3184413.pdf
格式: Adobe PDF
文件名: 10.1145@3184407.3184413.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。