中文版 | English
题名

Stochastic composite mirror descent: Optimal bounds with high probabilities

作者
通讯作者Tang,Ke
发表日期
2018
ISSN
1049-5258
会议录名称
卷号
2018-December
页码
1519-1529
摘要
We study stochastic composite mirror descent, a class of scalable algorithms able to exploit the geometry and composite structure of a problem. We consider both convex and strongly convex objectives with non-smooth loss functions, for each of which we establish high-probability convergence rates optimal up to a logarithmic factor. We apply the derived computational error bounds to study the generalization performance of multi-pass stochastic gradient descent (SGD) in a non-parametric setting. Our high-probability generalization bounds enjoy a loga-rithmical dependency on the number of passes provided that the step size sequence is square-summable, which improves the existing bounds in expectation with a polynomial dependency and therefore gives a strong justification on the ability of multi-pass SGD to overcome overfitting. Our analysis removes boundedness assumptions on subgradients often imposed in the literature. Numerical results are reported to support our theoretical findings.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85064828146
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44331
专题工学院_计算机科学与工程系
作者单位
Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Lei,Yunwen,Tang,Ke. Stochastic composite mirror descent: Optimal bounds with high probabilities[C],2018:1519-1529.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。