中文版 | English
题名

On multiset selection with size constraints

作者
发表日期
2018
会议录名称
页码
1395-1402
摘要
This paper considers the multiset selection problem with size constraints, which arises in many real-world applications such as budget allocation. Previous studies required the objective function f to be submodular, while we relax this assumption by introducing the notion of the submodularity ratios (denoted by α and β ). We propose an anytime randomized iterative approach POMS, which maximizes the given objective f and minimizes the multiset size simultaneously. We prove that POMS using a reasonable time achieves an approximation guarantee of max{1 − e , (α /2)(1 − e )}. Particularly, when f is submdoular, this bound is at least as good as that of the previous greedy-style algorithms. In addition, we give lower bounds on the submodularity ratio for the objectives of budget allocation. Experimental results on budget allocation as well as a more complex application, namely, generalized influence maximization, exhibit the superior performance of the proposed approach.
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85057227772
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44350
专题工学院_计算机科学与工程系
作者单位
1.Anhui Province Key Lab of Big Data Analysis and Application, School of Computer Science and Technology, University of Science and Technology of China, ,Hefei,230027,China
2.Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Qian,Chao,Zhang,Yibo,Tang,Ke,et al. On multiset selection with size constraints[C],2018:1395-1402.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Chao]的文章
[Zhang,Yibo]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Qian,Chao]的文章
[Zhang,Yibo]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Qian,Chao]的文章
[Zhang,Yibo]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。