中文版 | English
题名

Efficient DNN neuron pruning by minimizing layer-wise nonlinear reconstruction error

作者
发表日期
2018
ISSN
1045-0823
会议录名称
卷号
2018-July
页码
2298-2304
摘要
Deep neural networks (DNNs) have achieved great success, but the applications to mobile devices are limited due to their huge model size and low inference speed. Much effort thus has been devoted to pruning DNNs. Layer-wise neuron pruning methods have shown their effectiveness, which minimize the reconstruction error of linear response with a limited number of neurons in each single layer pruning. In this paper, we propose a new layer-wise neuron pruning approach by minimizing the reconstruction error of nonlinear units, which might be more reasonable since the error before and after activation can change significantly. An iterative optimization procedure combining greedy selection with gradient decent is proposed for single layer pruning. Experimental results on benchmark DNN models show the superiority of the proposed approach. Particularly, for VGGNet, the proposed approach can compress its disk space by 13.6× and bring a speedup of 3.7×; for AlexNet, it can achieve a compression rate of 4.1× and a speedup of 2.2×, respectively.
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85055715831
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44351
专题工学院_计算机科学与工程系
作者单位
1.Anhui Province Key Lab of Big Data Analysis and Application, University of Science and Technology of China, ,Hefei,230027,China
2.Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Jiang,Chunhui,Li,Guiying,Qian,Chao,et al. Efficient DNN neuron pruning by minimizing layer-wise nonlinear reconstruction error[C],2018:2298-2304.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Chunhui]的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
百度学术
百度学术中相似的文章
[Jiang,Chunhui]的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
必应学术
必应学术中相似的文章
[Jiang,Chunhui]的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。