题名 | Sequence selection by Pareto optimization |
作者 | |
发表日期 | 2018
|
ISSN | 1045-0823
|
会议录名称 | |
卷号 | 2018-July
|
页码 | 1485-1491
|
会议地点 | Stockholm, Sweden
|
出版者 | |
摘要 | The problem of selecting a sequence of items from a universe that maximizes some given objective function arises in many real-world applications. In this paper, we propose an anytime randomized iterative approach POSEQSEL, which maximizes the given objective function and minimizes the sequence length simultaneously. We prove that for any previously studied objective function, POSEQSEL using a reasonable time can always reach or improve the best known approximation guarantee. Empirical results exhibit the superior performance of POSEQSEL. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Science and Technology Innovation Commission[ZDSYS201703031748284]
; National Natural Science Foundation of China[61672478]
; [2016QNRC001]
|
EI入藏号 | 20184406016148
|
EI主题词 | Artificial intelligence
; Multiobjective optimization
|
EI分类号 | Artificial Intelligence:723.4
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85055706595
|
来源库 | Scopus
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44352 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Anhui Province Key Lab of Big Data Analysis and Application, University of Science and Technology of China, ,Hefei,230027,China 2.Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Qian,Chao,Feng,Chao,Tang,Ke. Sequence selection by Pareto optimization[C]:International Joint Conferences on Artificial Intelligence,2018:1485-1491.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论