中文版 | English
题名

Optimization based layer-wise magnitude-based pruning for DNN compression

作者
发表日期
2018
ISSN
1045-0823
会议录名称
卷号
2018-July
页码
2383-2389
摘要
Layer-wise magnitude-based pruning (LMP) is a very popular method for deep neural network (DNN) compression. However, tuning the layer-specific thresholds is a difficult task, since the space of threshold candidates is exponentially large and the evaluation is very expensive. Previous methods are mainly by hand and require expertise. In this paper, we propose an automatic tuning approach based on optimization, named OLMP. The idea is to transform the threshold tuning problem into a constrained optimization problem (i.e., minimizing the size of the pruned model subject to a constraint on the accuracy loss), and then use powerful derivative-free optimization algorithms to solve it. To compress a trained DNN, OLMP is conducted within a new iterative pruning and adjusting pipeline. Empirical results show that OLMP can achieve the best pruning ratio on LeNet-style models (i.e., 114 times for LeNet-300-100 and 298 times for LeNet-5) compared with some state-ofthe-art DNN pruning methods, and can reduce the size of an AlexNet-style network up to 82 times without accuracy loss.
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85055705469
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44353
专题工学院_计算机科学与工程系
作者单位
1.Anhui Province Key Lab of Big Data Analysis and Application, University of Science and Technology of China, ,Hefei,230027,China
2.CERCIA, School of Computer Science, University of Birmingham, ,Birmingham,B15 2TT,United Kingdom
3.Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Li,Guiying,Qian,Chao,Jiang,Chunhui,et al. Optimization based layer-wise magnitude-based pruning for DNN compression[C],2018:2383-2389.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
[Jiang,Chunhui]的文章
百度学术
百度学术中相似的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
[Jiang,Chunhui]的文章
必应学术
必应学术中相似的文章
[Li,Guiying]的文章
[Qian,Chao]的文章
[Jiang,Chunhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。