中文版 | English
题名

Distributed Pareto optimization for subset selection

作者
发表日期
2018
ISSN
1045-0823
会议录名称
卷号
2018-July
页码
1492-1498
会议地点
Stockholm, Sweden
出版者
摘要
The subset selection problem that selects a few items from a ground set arises in many applications such as maximum coverage, influence maximization, sparse regression, etc. The recently proposed POSS algorithm is a powerful approximation solver for this problem. However, POSS requires centralized access to the full ground set, and thus is impractical for large-scale real-world applications, where the ground set is too large to be stored on one single machine. In this paper, we propose a distributed version of POSS (DPOSS) with a bounded approximation guarantee. DPOSS can be easily implemented in the MapReduce framework. Our extensive experiments using Spark, on various real-world data sets with size ranging from thousands to millions, show that DPOSS can achieve competitive performance compared with the centralized POSS, and is almost always better than the state-of-the-art distributed greedy algorithm RANDGREEDI.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
[2017YFB1003102] ; [NA150123] ; Shenzhen Science and Technology Innovation Commission[ZDSYS201703031748284] ; National Natural Science Foundation of China[61672478] ; National Natural Science Foundation of China[61603367]
EI入藏号
20184406016149
EI主题词
Artificial intelligence ; Multiobjective optimization ; Pareto principle ; Scheduling algorithms
EI分类号
Artificial Intelligence:723.4 ; Mathematics:921 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85055699108
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44354
专题工学院_计算机科学与工程系
作者单位
1.,Anhui Province Key Lab of Big Data Analysis and Application,University of Science and Technology of China,Hefei,230027,China
2.,Shenzhen Key Lab of Computational Intelligence,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Qian,Chao,Li,Guiying,Feng,Chao,et al. Distributed Pareto optimization for subset selection[C]:International Joint Conferences on Artificial Intelligence,2018:1492-1498.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Chao]的文章
[Li,Guiying]的文章
[Feng,Chao]的文章
百度学术
百度学术中相似的文章
[Qian,Chao]的文章
[Li,Guiying]的文章
[Feng,Chao]的文章
必应学术
必应学术中相似的文章
[Qian,Chao]的文章
[Li,Guiying]的文章
[Feng,Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。