题名 | On convergence of numerical methods for optimization problems governed by scalar hyperbolic conservation laws |
作者 | |
通讯作者 | Herty,Michael |
DOI | |
发表日期 | 2018
|
ISSN | 2194-1009
|
EISSN | 2194-1017
|
会议录名称 | |
卷号 | 236
|
页码 | 691-706
|
会议地点 | Aachen, Germany
|
出版者 | |
摘要 | We consider optimization problems governed by scalar hyperbolic conservation laws in one space dimension and study numerical schemes for the solution to arising linear adjoint equations. We analyze convergence properties of adjoint and gradient approximations on an unbounded domain x∈ ℝ with a strictly convex flux. This paper provides the theoretical foundation of the scheme introduced in (Herty, Kurganov and Kurochkin, Commun. Math. Sci. 51, 15–48 (2015)) [14]. We also demonstrate that using a higher order temporal discretization helps to substantially improve both the efficiency and accuracy of the overall numerical method. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | [DMS-1107444]
; [HE5386/13,14,15-1]
; [EXC128]
; National Science Foundation[DMS-1115718]
; National Science Foundation[DMS-1521009]
|
EI入藏号 | 20182705519515
|
EI主题词 | Computational mechanics
; Optimization
; Physical properties
|
EI分类号 | Mathematics:921
; Physical Properties of Gases, Liquids and Solids:931.2
|
Scopus记录号 | 2-s2.0-85049362021
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44370 |
专题 | 理学院_数学系 |
作者单位 | 1.,Department of Mathematics,RWTH Aachen University,Aachen,Templergraben 55,D-52056,Germany 2.,Department of Mathematics,Southern University of Science and Technology of China,Shenzhen,518055,China 3.,Mathematics Department,Tulane University,New Orleans,70118,United States |
推荐引用方式 GB/T 7714 |
Herty,Michael,Kurganov,Alexander,Kurochkin,Dmitry. On convergence of numerical methods for optimization problems governed by scalar hyperbolic conservation laws[C]:Springer New York LLC,2018:691-706.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论