中文版 | English
题名

Evaluating the quality of graph embeddings via topological feature reconstruction

作者
DOI
发表日期
2017-07-01
会议录名称
卷号
2018-January
页码
2691-2700
会议地点
Boston, MA, United states
出版者
摘要

In this paper we study three state-of-the-art, but competing, approaches for generating graph embeddings using unsupervised neural networks. Graph embeddings aim to discover the 'best' representation for a graph automatically and have been applied to graphs from numerous domains, including social networks. We evaluate their effectiveness at capturing a good representation of a graph's topological structure by using the embeddings to predict a series of topological features at the vertex level. We hypothesise that an 'ideal' high quality graph embedding should be able to capture key parts of the graph's topology, thus we should be able to use it to predict common measures of the topology, for example vertex centrality. This could also be used to better understand which topological structures are truly being captured by the embeddings. We first review these three graph embedding techniques and then evaluate how close they are to being 'ideal'. We provide a framework, with extensive experimental evaluation on empirical and synthetic datasets, to assess the effectiveness of several approaches at creating graph embeddings which capture detailed topological structure.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Nvidia[]
EI入藏号
20182305267297
EI主题词
Big data ; Deep learning ; Embeddings
EI分类号
Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85047764386
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44464
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,Durham University,Durham,United Kingdom
2.School of Computer Science and Engineering,SUSTech,Shenzhen,China
3.School of Computing,Newcastle University,Newcastle,United Kingdom
推荐引用方式
GB/T 7714
Bonner,Stephen,Brennan,John,Kureshi,Ibad,et al. Evaluating the quality of graph embeddings via topological feature reconstruction[C]:Institute of Electrical and Electronics Engineers Inc.,2017:2691-2700.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
百度学术
百度学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
必应学术
必应学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。