中文版 | English
题名

Combining conformal prediction and genetic programming for symbolic interval regression

作者
DOI
发表日期
2017-07-01
会议录名称
页码
1001-1008
会议地点
Berlin, Germany
出版地
1515 BROADWAY, NEW YORK, NY 10036-9998 USA
出版者
摘要
Symbolic regression has been one of the main learning domains for Genetic Programming. However, most work so far on using genetic programming for symbolic regression only focus on point prediction. The problem of symbolic interval regression is for each input to find a prediction interval containing the output with a given statistical confidence. This problem is important for many risk-sensitive domains (such as in medical and financial applications). In this paper, we propose the combination of conformal prediction and genetic programming for solving the problem of symbolic interval regression. We study two approaches called black-box con-formal prediction genetic programming (black-box CPGP) and white-box conformal prediction genetic programming (white-box CPGP) on a number of benchmarks and previously used problems. We compare the performance of these approaches with two popular interval regressors in statistic and machine learning domains, namely, the linear quantile regression and quantile random forrest. The experimental results show that, on the two performance metrics, blackbox CPGP is comparable to the linear quantile regression and not much worse than the quantile random forrest on validity and much better than them on efficiency.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Vietnam National Foundation for Science and Technology Development (NAFOSTED)[102.01-2014.09]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000530095200126
EI入藏号
20173104005624
EI主题词
Forecasting ; Genetic algorithms ; Learning systems ; Problem solving ; Regression analysis
EI分类号
Computer Programming:723.1 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85026420468
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44467
专题工学院_计算机科学与工程系
作者单位
1.IT Department,University of Information and Communication Technology,Thainguyen,Viet Nam
2.HANU IT R and D Center,HanoiUniversity,Hanoi,Viet Nam
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Thuong,Pham Thi,Hoai,Nguyen Xuan,Yao,Xin. Combining conformal prediction and genetic programming for symbolic interval regression[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2017:1001-1008.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Thuong,Pham Thi]的文章
[Hoai,Nguyen Xuan]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Thuong,Pham Thi]的文章
[Hoai,Nguyen Xuan]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Thuong,Pham Thi]的文章
[Hoai,Nguyen Xuan]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。