题名 | Combining conformal prediction and genetic programming for symbolic interval regression |
作者 | |
DOI | |
发表日期 | 2017-07-01
|
会议录名称 | |
页码 | 1001-1008
|
会议地点 | Berlin, Germany
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | Symbolic regression has been one of the main learning domains for Genetic Programming. However, most work so far on using genetic programming for symbolic regression only focus on point prediction. The problem of symbolic interval regression is for each input to find a prediction interval containing the output with a given statistical confidence. This problem is important for many risk-sensitive domains (such as in medical and financial applications). In this paper, we propose the combination of conformal prediction and genetic programming for solving the problem of symbolic interval regression. We study two approaches called black-box con-formal prediction genetic programming (black-box CPGP) and white-box conformal prediction genetic programming (white-box CPGP) on a number of benchmarks and previously used problems. We compare the performance of these approaches with two popular interval regressors in statistic and machine learning domains, namely, the linear quantile regression and quantile random forrest. The experimental results show that, on the two performance metrics, blackbox CPGP is comparable to the linear quantile regression and not much worse than the quantile random forrest on validity and much better than them on efficiency. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Vietnam National Foundation for Science and Technology Development (NAFOSTED)[102.01-2014.09]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000530095200126
|
EI入藏号 | 20173104005624
|
EI主题词 | Forecasting
; Genetic algorithms
; Learning systems
; Problem solving
; Regression analysis
|
EI分类号 | Computer Programming:723.1
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85026420468
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44467 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.IT Department,University of Information and Communication Technology,Thainguyen,Viet Nam 2.HANU IT R and D Center,HanoiUniversity,Hanoi,Viet Nam 3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Thuong,Pham Thi,Hoai,Nguyen Xuan,Yao,Xin. Combining conformal prediction and genetic programming for symbolic interval regression[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2017:1001-1008.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论