中文版 | English
题名

Multiobjective data mining from solutions by evolutionary multiobjective optimization

作者
DOI
发表日期
2017-07-01
会议录名称
页码
617-624
会议地点
Berlin, Germany
出版地
1515 BROADWAY, NEW YORK, NY 10036-9998 USA
出版者
摘要
One research direction in the field of evolutionary multiobjective optimization (EMO) is a post-analytical process of non-dominated solutions in order to analyze the relationship between design variables and objective functions for optimization problems. For this purpose, data mining techniques have been used in some studies. From a practical point of view, this process itself should be considered as a multiobjective optimization problem. In this paper, multiobjective genetic fuzzy rule selection is applied to the post-analytical process of solutions obtained by EMO algorithms. First, multiple regions of interest are specified in the objective space. Each region with a number of solutions is handled as a different class. A set of patterns is generated by the labeled solutions. Second, a number of fuzzy if-then rules are generated by classification rule mining. Finally, an EMO algorithm is applied to combinatorial optimization of fuzzy if-then rules in order to obtain a number of non-dominated fuzzy classifiers with respect to accuracy and complexity. Through computational experiments using two engineering problems, we show that we can obtain various classifiers with a variety of complexity-accuracy tradeoff.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000530095200078
EI入藏号
20173104005679
EI主题词
Combinatorial optimization ; Data mining ; Evolutionary algorithms ; Fuzzy inference ; Fuzzy rules ; Fuzzy sets ; Pattern recognition ; Solution mining
EI分类号
Mine and Quarry Operations:502.1 ; Data Processing and Image Processing:723.2 ; Expert Systems:723.4.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85026366331
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44469
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Osaka Prefecture University,Sakai, Osaka,Japan
2.Southern University of Science and Technology (SUSTech),Shenzhen, Guangdong,China
推荐引用方式
GB/T 7714
Nojima,Yusuke,Tanigaki,Yuki,Ishibuchi,Hisao. Multiobjective data mining from solutions by evolutionary multiobjective optimization[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2017:617-624.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nojima,Yusuke]的文章
[Tanigaki,Yuki]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Nojima,Yusuke]的文章
[Tanigaki,Yuki]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Nojima,Yusuke]的文章
[Tanigaki,Yuki]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。