题名 | A robust and efficient estimation method for partially nonlinear models via a new MM algorithm |
作者 | |
通讯作者 | Fei, Yu |
发表日期 | 2019-12
|
DOI | |
发表期刊 | |
ISSN | 0932-5026
|
EISSN | 1613-9798
|
卷号 | 60期号:6页码:2063-2085 |
摘要 | When the observed data set contains outliers, it is well known that the classical least squares method is not robust. To overcome this difficulty, Wang et al. (J Am Stat Assoc 108(502): 632-643, 2013) proposed a robust variable selection method by using the exponential squared loss (ESL) function with a tuning parameter. Although many important statistical models are investigated, to date, in the presence of outliers there is no paper to study the partially nonlinear model by using the ESL function. To fill in this gap, in this paper, we propose a robust and efficient estimation method for the partially nonlinear model based on the ESL function. Under certain conditions, we have shown that the proposed estimators can achieve the best convergence rates. Next, the asymptotic normality of the proposed estimators is established. In addition, we develop a new minorization-maximization algorithm to calculate the estimates for both non-parametric and parametric parts and present a procedure for deriving initial values. Finally, we provide a data-driven approach to select the tuning parameters. Numerical simulations and a real data analysis are used to illustrate that when there are outliers, the proposed ESL method is more robust and efficient for partially nonlinear models than the existing linear approximation method and the composite quantile regression method. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Fundamental Research Funds for the Central Universities[11615455]
|
WOS研究方向 | Mathematics
|
WOS类目 | Statistics & Probability
|
WOS记录号 | WOS:000494479600011
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44746 |
专题 | 理学院_数学系 工学院_材料科学与工程系 |
作者单位 | 1.Jinan Univ, Dept Stat, Coll Econ, Guangzhou 510632, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 3.Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Yunnan, Peoples R China |
推荐引用方式 GB/T 7714 |
Jiang, Yunlu,Tian, Guo-Liang,Fei, Yu. A robust and efficient estimation method for partially nonlinear models via a new MM algorithm[J]. STATISTICAL PAPERS,2019,60(6):2063-2085.
|
APA |
Jiang, Yunlu,Tian, Guo-Liang,&Fei, Yu.(2019).A robust and efficient estimation method for partially nonlinear models via a new MM algorithm.STATISTICAL PAPERS,60(6),2063-2085.
|
MLA |
Jiang, Yunlu,et al."A robust and efficient estimation method for partially nonlinear models via a new MM algorithm".STATISTICAL PAPERS 60.6(2019):2063-2085.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Jiang2019_Article_AR(559KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论