中文版 | English
题名

A robust and efficient estimation method for partially nonlinear models via a new MM algorithm

作者
通讯作者Fei, Yu
发表日期
2019-12
DOI
发表期刊
ISSN
0932-5026
EISSN
1613-9798
卷号60期号:6页码:2063-2085
摘要
When the observed data set contains outliers, it is well known that the classical least squares method is not robust. To overcome this difficulty, Wang et al. (J Am Stat Assoc 108(502): 632-643, 2013) proposed a robust variable selection method by using the exponential squared loss (ESL) function with a tuning parameter. Although many important statistical models are investigated, to date, in the presence of outliers there is no paper to study the partially nonlinear model by using the ESL function. To fill in this gap, in this paper, we propose a robust and efficient estimation method for the partially nonlinear model based on the ESL function. Under certain conditions, we have shown that the proposed estimators can achieve the best convergence rates. Next, the asymptotic normality of the proposed estimators is established. In addition, we develop a new minorization-maximization algorithm to calculate the estimates for both non-parametric and parametric parts and present a procedure for deriving initial values. Finally, we provide a data-driven approach to select the tuning parameters. Numerical simulations and a real data analysis are used to illustrate that when there are outliers, the proposed ESL method is more robust and efficient for partially nonlinear models than the existing linear approximation method and the composite quantile regression method.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Fundamental Research Funds for the Central Universities[11615455]
WOS研究方向
Mathematics
WOS类目
Statistics & Probability
WOS记录号
WOS:000494479600011
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44746
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Jinan Univ, Dept Stat, Coll Econ, Guangzhou 510632, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
3.Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Yunlu,Tian, Guo-Liang,Fei, Yu. A robust and efficient estimation method for partially nonlinear models via a new MM algorithm[J]. STATISTICAL PAPERS,2019,60(6):2063-2085.
APA
Jiang, Yunlu,Tian, Guo-Liang,&Fei, Yu.(2019).A robust and efficient estimation method for partially nonlinear models via a new MM algorithm.STATISTICAL PAPERS,60(6),2063-2085.
MLA
Jiang, Yunlu,et al."A robust and efficient estimation method for partially nonlinear models via a new MM algorithm".STATISTICAL PAPERS 60.6(2019):2063-2085.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Jiang2019_Article_AR(559KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Yunlu]的文章
[Tian, Guo-Liang]的文章
[Fei, Yu]的文章
百度学术
百度学术中相似的文章
[Jiang, Yunlu]的文章
[Tian, Guo-Liang]的文章
[Fei, Yu]的文章
必应学术
必应学术中相似的文章
[Jiang, Yunlu]的文章
[Tian, Guo-Liang]的文章
[Fei, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。