中文版 | English
题名

A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization

作者
通讯作者Tang, Xiaoying
发表日期
2020-04-01
DOI
发表期刊
ISSN
1539-2791
EISSN
1559-0089
卷号18页码:251–266
摘要

In this paper, we proposed an efficient approach for large deformation diffeomorphic metric mapping (LDDMM) for brain images by utilizing GPU-based parallel computing and a mixture automatic step size estimation method for gradient descent (MAS-GD). We systematically evaluated the proposed approach in terms of two matching cost functions, including the Sum of Squared Differences (SSD) and the Cross-Correlation (CC). The registration accuracy and computational efficiency on two datasets inducing respective 120 and 1,560 registration maps were evaluated and compared between CPU-based LDDMM-SSD and GPU-based LDDMM-SSD both utilizing backtracking line search for gradient descent (BLS-GD), GPU-based LDDMM (BLS-GD) and GPU-based LDDMM (MAS-GD) with each of the two matching cost functions being used. In addition, we compared our GPU-based LDDMM-CC (MAS-GD) with another widely-used state-of-the-art image registration algorithm, the symmetric diffeomorphic image registration with CC (SyN-CC). The GPU-based LDDMM-SSD was about 94 times faster than the CPU-based version (8.78 mins versus 828.35 mins) without sacrificing the Dice accuracy (0.8608 versus 0.8609). The computational time of LDDMM with MAS-GD for SSD and CC were shorter than that of LDDMM with BLS-GD (5.29 mins versus 8.78 mins for SSD and 6.69 mins versus 65.87 mins for CC), and the corresponding Dice scores were higher, especially for CC (0.8672 versus 0.8633). Compared with SyN-CC, the proposed algorithm, GPU-based LDDMM-CC (MAS-GD) had a higher registration accuracy (0.8672 versus 0.8612 and 0.7585 versus 0.7537 for the two datasets) and less computational time (6.80 mins versus 25.97 mins and 6.58 mins versus 26.23 mins for the two datasets).

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[NSFC 81501546]
WOS研究方向
Computer Science ; Neurosciences & Neurology
WOS类目
Computer Science, Interdisciplinary Applications ; Neurosciences
WOS记录号
WOS:000495046400001
出版者
ESI学科分类
NEUROSCIENCE & BEHAVIOR
来源库
Web of Science
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44761
专题工学院_电子与电气工程系
作者单位
1.Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Wu, Jiong,Tang, Xiaoying. A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization[J]. NEUROINFORMATICS,2020,18:251–266.
APA
Wu, Jiong,&Tang, Xiaoying.(2020).A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization.NEUROINFORMATICS,18,251–266.
MLA
Wu, Jiong,et al."A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization".NEUROINFORMATICS 18(2020):251–266.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A Large Deformation (2143KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu, Jiong]的文章
[Tang, Xiaoying]的文章
百度学术
百度学术中相似的文章
[Wu, Jiong]的文章
[Tang, Xiaoying]的文章
必应学术
必应学术中相似的文章
[Wu, Jiong]的文章
[Tang, Xiaoying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。