中文版 | English
题名

Dynamical important residue network (DIRN): network inference via conformational change

作者
发表日期
2019-11-01
DOI
发表期刊
ISSN
1367-4803
EISSN
1367-4811
卷号35期号:22页码:4664-4670
摘要
MOTIVATION: Protein residue interaction network has emerged as a useful strategy to understand the complex relationship between protein structures and functions and how functions are regulated. In a residue interaction network, every residue is used to define a network node, adding noises in network post-analysis and increasing computational burden. In addition, dynamical information is often necessary in deciphering biological functions. RESULTS: We developed a robust and efficient protein residue interaction network method, termed dynamical important residue network, by combining both structural and dynamical information. A major departure from previous approaches is our attempt to identify important residues most important for functional regulation before a network is constructed, leading to a much simpler network with the important residues as its nodes. The important residues are identified by monitoring structural data from ensemble molecular dynamics simulations of proteins in different functional states. Our tests show that the new method performs well with overall higher sensitivity than existing approaches in identifying important residues and interactions in tested proteins, so it can be used in studies of protein functions to provide useful hypotheses in identifying key residues and interactions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Institutes of Health/NIGMS[GM093040] ; National Institutes of Health/NIGMS[GM079383]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:000501728500016
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85070456491
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/44803
专题理学院_化学系
工学院_生物医学工程系
工学院_材料科学与工程系
作者单位
1.State Key Laboratory of Microbial Metabolism,Department of Bioinformatics and Biostatistics,National Experimental Teaching Center for Life Sciences and Biotechnology,School of Life Sciences and Biotechnology,Shanghai Jiao Tong University,200240,China
2.Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
3.Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
4.Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
5.Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
6.Department of Chemistry,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Li,Quan,Luo,Ray,Chen,Hai Feng. Dynamical important residue network (DIRN): network inference via conformational change[J]. BIOINFORMATICS,2019,35(22):4664-4670.
APA
Li,Quan,Luo,Ray,&Chen,Hai Feng.(2019).Dynamical important residue network (DIRN): network inference via conformational change.BIOINFORMATICS,35(22),4664-4670.
MLA
Li,Quan,et al."Dynamical important residue network (DIRN): network inference via conformational change".BIOINFORMATICS 35.22(2019):4664-4670.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Quan]的文章
[Luo,Ray]的文章
[Chen,Hai Feng]的文章
百度学术
百度学术中相似的文章
[Li,Quan]的文章
[Luo,Ray]的文章
[Chen,Hai Feng]的文章
必应学术
必应学术中相似的文章
[Li,Quan]的文章
[Luo,Ray]的文章
[Chen,Hai Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。