题名 | Heterogeneous domain adaptation via soft transfer network |
作者 | |
通讯作者 | Ye,Yunming |
DOI | |
发表日期 | 2019-10-15
|
会议录名称 | |
页码 | 1578-1586
|
会议地点 | Nice, France
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | Heterogeneous domain adaptation (HDA) aims to facilitate the learning task in a target domain by borrowing knowledge from a heterogeneous source domain. In this paper, we propose a Soft Transfer Network (STN), which jointly learns a domain-shared classifier and a domain-invariant subspace in an end-to-end manner, for addressing the HDA problem. The proposed STN not only aligns the discriminative directions of domains but also matches both the marginal and conditional distributions across domains. To circumvent negative transfer, STN aligns the conditional distributions by using the soft-label strategy of unlabeled target data, which prevents the hard assignment of each unlabeled target data to only one category that may be incorrect. Further, STN introduces an adaptive coefficient to gradually increase the importance of the soft-labels since they will become more and more accurate as the number of iterations increases. We perform experiments on the transfer tasks of image-to-image, text-to-image, and text-to-text. Experimental results testify that the STN significantly outperforms several state-of-the-art approaches. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] ; [来源记录] |
收录类别 | |
资助项目 | [2018YFB0504905]
; Shenzhen Technology Development Program[JCYJ20170811160212033]
; National Natural Science Foundation of China[61673202]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000509743400196
|
EI入藏号 | 20194607685191
|
Scopus记录号 | 2-s2.0-85074870905
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:52
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/44807 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Yao,Yuan,Zhang,Yu,Li,Xutao,et al. Heterogeneous domain adaptation via soft transfer network[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2019:1578-1586.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1145@3343031.3350(1489KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论