[1] Administration, U. S. E. I. Annual Energy Outlook 2022; March, 2022.
[2] Lin, X.; Dai, X. L.; Pu, C. D.; Deng, Y. Z.; Niu, Y.; Tong, L. M.; Fang, W.; Jin, Y. Z.; Peng, X. G., Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 2017, 8.
[3] Yang, Z.; Gao, M.; Wu, W.; Yang, X.; Sun, X. W.; Zhang, J.; Wang, H.-C.; Liu, R.-S.; Han, C.-Y.; Yang, H.; Li, W., Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today 2019, 24, 69-93.
[4] Chen, D.; Chen, D.; Dai, X.; Zhang, Z.; Lin, J.; Deng, Y.; Hao, Y.; Zhang, C.; Zhu, H.; Gao, F.; Jin, Y., Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance. Adv Mater 2020, 32 (52), e2006178.
[5] Ye, F.; Shan, Q.; Zeng, H.; Choy, W. C. H., Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Lett. 2021, 6 (9), 3114-3131.
[6] Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I., Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem Rev 2016, 116 (18), 10513-10622.
[7] Hu, Y. Z.; Koch, S. W.; Thoai, D. B. T., Quantum Confinement and Coulomb Effects in Semiconductor Quantum Dots. Mod Phys Lett B 1990, 4 (16), 1009-1016.
[8] Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H. M., Quantum Nanostructures (QDs): An Overview. In Synthesis of Inorganic Nanomaterials, 2018; pp 59-88.
[9] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298 (5599), 1759-1762.
[10] Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M., Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annu Rev Anal Chem 2013, 6, 143-162.
[11] Zhou, J.; Yang, Y.; Zhang, C. Y., Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015, 115 (21), 11669-11717.
[12] Meinardi, F.; Bruni, F.; Brovelli, S., Luminescent solar concentrators for building-integrated photovoltaics. Nat Rev Mater 2017, 2 (12).
[13] Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chem Rev 2015, 115 (23), 12732-12763.
[14] Ren, A. B.; Yuan, L. M.; Xu, H.; Wu, J.; Wang, Z. M., Recent progress of III-V quantum dot infrared photodetectors on silicon. J Mater Chem C 2019, 7 (46), 14441-14453.
[15] Chen, B. L.; Wan, Y. T.; Xie, Z. Y.; Huang, J.; Zhang, N. T.; Shang, C.; Norman, J.; Li, Q.; Yeyu, T.; Lau, K. M.; Gossard, A. C.; Bowers, J. E., Low Dark Current High Gain InAs Quantum Dot Avalanche Photodiodes Monolithically Grown on Si. Acs Photonics 2020, 7 (2), 528-533.
[16] Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I., Colloidal quantum dot lasers. Nat Rev Mater 2021, 6 (5), 382-401.
[17] Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulovic, V.; Bawendi, M. G., Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics 2008, 2 (4), 247-250.
[18] Lim, J.; Park, Y. S.; Klimov, V. I., Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat Mater 2018, 17 (1), 42-+.
[19] Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z., Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 2017, 29 (14).
[20] Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y.; Wang, S. J.; Du, Z. L.; Li, L. S.; Zhang, Z. Y., Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 2019, 13 (3), 192-+.
[21] Chow, W. W.; Jahnke, F., On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quant Electron 2013, 37 (3), 109-184.
[22] Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G., Quantum Dots for Display Applications. Angew Chem Int Edit 2020, 59 (50), 22312-22323.
[23] Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1 (4), 207-211.
[24] Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y. Q.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L., Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19 (4), 548-+.
[25] Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G., Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mat. 1996, 8 (1), 173-180.
[26] Reiss, P.; Bleuse, J.; Pron, A., Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2 (7), 781-784.
[27] Talapin, D. V.; Mekis, I.; Gotzinger, S.; Kornowski, A.; Benson, O.; Weller, H., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 2004, 108 (49), 18826-18831.
[28] Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J., Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater. 2007, 19 (15), 1927-+.
[29] Wang, X. B.; Li, W. W.; Sun, K., Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties. J Mater Chem 2011, 21 (24), 8558-8565.
[30] Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P., InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 2013, 5 (1), 307-317.
[31] Parliament, T. E., Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 On the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. 2011.
[32] PLC., N. G., European Commission to Prohibit Cadmium from TVs and Displays by October 2019. 2017. https://www.nanocotechnologies.com/media/european-commission-to-prohibit-cadmium/.
[33] Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R., Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem-Us 1996, 100 (17), 7212-7219.
[34] Micic, O. I.; Cheong, H. M.; Fu, H.; Zunger, A.; Sprague, J. R.; Mascarenhas, A.; Nozik, A. J., Size-dependent spectroscopy of InP quantum dots. J Phys Chem B 1997, 101 (25), 4904-4912.
[35] Wang, A.; Shen, H. B.; Zang, S. P.; Lin, Q. L.; Wang, H. Z.; Qian, L.; Niu, J. Z.; Li, L. S., Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 2015, 7 (7), 2951-2959.
[36] Xiang, C. Y.; Koo, W.; Chen, S.; So, F.; Liu, X.; Kong, X. X.; Wang, Y. J., Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Appl. Phys. Lett. 2012, 101 (5).
[37] Huang, X.; Yu, R. M.; Yang, X. Q.; Xu, X. M.; Zhang, H.; Zhang, D. D., Efficient CuInS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. J Lumin 2018, 202, 339-344.
[38] Li, L. A.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. Soc. 2011, 133 (5), 1176-1179.
[39] Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G., White light-emitting devices based on carbon dots' electroluminescence. Chem. Commun. 2011, 47 (12), 3502-3504.
[40] Kim, B. H.; Cho, C. H.; Mun, J. S.; Kwon, M. K.; Park, T. Y.; Kim, J. S.; Byeon, C. C.; Lee, J.; Park, S. J., Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv. Mater. 2008, 20 (16), 3100-3104.
[41] Shen, H. B.; Wang, H. Z.; Li, X. M.; Niu, J. Z.; Wang, H.; Chen, X.; Li, L. S., Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton T 2009, (47), 10534-10540.
[42] Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K. Y., High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103 (5).
[43] Kim, J. H.; Yang, H., High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%. Chem. Mat. 2016, 28 (17), 6329-6335.
[44] Cheng, K. Y.; Anthony, R.; Kortshagen, U. R.; Holmes, R. J., High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Lett. 2011, 11 (5), 1952-1956.
[45] Kim, D. H.; Kim, T. W., Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy 2017, 32, 441-447.
[46] Battaglia, D.; Peng, X. G., Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2 (9), 1027-1030.
[47] Li, L.; Reiss, P., One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130 (35), 11588-+.
[48] Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H., Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloid Surface A 2002, 202 (2-3), 145-154.
[49] Micic, O. I.; Smith, B. B.; Nozik, A. J., Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J Phys Chem B 2000, 104 (51), 12149-12156.
[50] Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W., Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Lett. 2020, 5 (4), 1095-1106.
[51] Kim, M. R.; Chung, J. H.; Lee, M.; Lee, S.; Fang, D. J., Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. J Colloid Interf Sci 2010, 350 (1), 5-9.
[52] Xu, S.; Ziegler, J.; Nann, T., Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 2008, 18 (23), 2653-2656.
[53] Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S., InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability. Chem. Mat. 2011, 23 (20), 4459-4463.
[54] Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L., High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. J Phys Chem Lett 2020, 11 (3), 960-967.
[55] Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K.; Sun, X. W., InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30 (49).
[56] Wang, H. C.; Zhang, H.; Chen, H. Y.; Yeh, H. C.; Tseng, M. R.; Chung, R. J.; Chen, S.; Liu, R. S., Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m-2. Small 2017, 13 (13).
[57] Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS Core Multi-Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Adv. Funct. Mater. 2021, 31 (11).
[58] Xie, R.; Battaglia, D.; Peng, X., Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129 (50), 15432-+.
[59] Ippen, C.; Greco, T.; Wedel, A., InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device. Journal of Information Display 2012, 13 (2), 91-95.
[60] Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K., Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots. ACS Nano 2013, 7 (10), 9019-9026.
[61] Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S., Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chem. Mat. 2017, 29 (16), 6893-6899.
[62] Kuo, T. R.; Hung, S. T.; Lin, Y. T.; Chou, T. L.; Kuo, M. C.; Kuo, Y. P.; Chen, C. C., Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes. Nanoscale Res Lett 2017, 12.
[63] Zhang, H.; Hu, N.; Zeng, Z. P.; Lin, Q. L.; Zhang, F. J.; Tang, A. W.; Jia, Y.; Li, L. S.; Shen, H. B.; Teng, F.; Du, Z. L., High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. Adv. Opt. Mater. 2019, 7 (7).
[64] Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E., Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays. Acs Appl Nano Mater 2019, 2 (3), 1496-1504.
[65] Hahm, D.; Chang, J. H.; Jeong, B. G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W. D.; Rhee, S.; Lim, J.; Lee, D. C.; Lee, C.; Char, K.; Bae, W. K., Design Principle for Bright, Robust, and Color-Pure InP/ZnSexS1-x/ZnS Heterostructures. Chem. Mat. 2019, 31 (9), 3476-3484.
[66] Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G., Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. J. Am. Chem. Soc. 2019, 141 (16), 6448-6452.
[67] Zhang, W. D.; Zhuang, W. D.; Liu, R. H.; Xing, X. R.; Qu, X. W.; Liu, H. C.; Xu, B.; Wang, K.; Sun, X. W., Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices. Acs Omega 2019, 4 (21), 18961-18968.
[68] Taylor, D. A.; Teku, J. A.; Cho, S.; Chae, W. S.; Jeong, S. J.; Lee, J. S., Importance of Surface Functionalization and Purification for Narrow FWHM and Bright Green-Emitting InP Core-Multishell Quantum Dots via a Two-Step Growth Process. Chem. Mat. 2021, 33 (12), 4399-4407.
[69] Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T., High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2 (1), 10.
[70] Yu, P.; Shan, Y. L.; Cao, S.; Hu, Y. Q.; Li, Q. Y.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L., Inorganic Solid Phosphorus Precursor of Sodium Phosphaethynolate for Synthesis of Highly Luminescent InP-Based Quantum Dots. ACS Energy Lett. 2021, 6 (8), 2697-2703.
[71] Wen, Z. L.; Zhou, Z. M.; Liu, H. C.; Wang, Z. J.; Li, X.; Fang, F.; Wang, K.; Teo, K. L.; Sun, X. W., Color revolution: toward ultra-wide color gamut displays. J Phys D Appl Phys 2021, 54 (21).
[72] Chen, J. H., V.; Hartlove, J.; Hofler, J.; Lee, E., A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film. SID Symposium Digest of Technical Papers 2012, Wiley Online Library, 895-896.
[73] Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370 (6488), 354-357.
[74] Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515 (7525), 96-99.
[75] Hao, J. J.; Liu, H. C.; Miao, J.; Lu, R.; Zhou, Z. M.; Zhao, B. X.; Xie, B.; Cheng, J. J.; Wang, K.; Delville, M. H., A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci Rep 2019, 9.
[76] Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L., Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9.
[77] Jo, J. H.; Kim, J. H.; Lee, S. H.; Jang, H. S.; Jang, D. S.; Lee, J. C.; Park, K. U.; Choi, Y.; Ha, C.; Yang, H., Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating. J. Alloy. Compd. 2015, 647, 6-13.
[78] Liu, H. C.; Zhong, H. Y.; Zheng, F. K.; Xie, Y.; Li, D. P.; Wu, D.; Zhou, Z. M.; Sun, X. W.; Wang, K., Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes. Chin. Phys. B 2019, 28 (12).
[79] Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27 (44), 7162-+.
[80] Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B., CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26 (15), 2435-2445.
[81] Li, Z. C.; Chen, Z. M.; Yang, Y. C.; Xue, Q. F.; Yip, H. L.; Cao, Y., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 2019, 10.
[82] Qi, H.; Wang, S. J.; Jiang, X. H.; Fang, Y.; Wang, A.; Shen, H. B.; Du, Z. L., Research progress and challenges of blue light-emitting diodes based on II-VI semiconductor quantum dots. J Mater Chem C 2020, 8 (30), 10160-10173.
[83] https://www.ossila.com.
[84] Stouwdam, J. W.; Janssen, R. A. J., Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J Mater Chem 2008, 18 (16), 1889-1894.
[85] Manders, J. R.; Qian, L.; Titov, A.; Hyvonen, J.; Tokarz-Scott, J.; Acharya, K. P.; Yang, Y. X.; Cao, W. R.; Zheng, Y.; Xue, J. G.; Holloway, P. H., High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. J Soc Inf Display 2015, 23 (11), 523-528.
[86] Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; Kazlas, P. T., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photonics 2013, 7 (5), 407-412.
[87] Semet, V.; Adessi, C.; Capron, T.; Mouton, R.; Binh, V. T., Low work-function cathodes from Schottky to field-induced ballistic electron emission: Self-consistent numerical approach. Phys. Rev. B 2007, 75 (4).
[88] Simmons, J. G., Richardson-Schottky Effect in Solids. Phys Rev Lett 1965, 15 (25), 967-&.
[89] Feng, Y.; Verboncoeur, J. P., Transition from Fowler-Nordheim field emission to space charge limited current density. Phys Plasmas 2006, 13 (7).
[90] Parker, I. D., Carrier Tunneling and Device Characteristics in Polymer Light-Emitting-Diodes. J Appl Phys 1994, 75 (3), 1656-1666.
[91] van Woudenbergh, T.; Wildeman, J.; Blom, P. W. M., Charge injection across a polymeric heterojunction. Phys. Rev. B 2005, 71 (20).
[92] Herz, L. M., Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. Annu Rev Phys Chem 2016, 67, 65-89.
[93] deQuilettes, D. W.; Frohna, K.; Emin, D.; Kirchartz, T.; Bulovic, V.; Ginger, D. S.; Stranks, S. D., Charge-Carrier Recombination in Halide Perovskites. Chem Rev 2019, 119 (20), 11007-11019.
[94] Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L., Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices. Adv. Mater. 2018, 30 (50).
[95] Ba, G. H.; Xu, Q. L.; Li, X. Y.; Lin, Q. L.; Shen, H. B.; Du, Z. L., Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering. Opt Express 2021, 29 (8), 12169-12178.
[96] Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E., Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586 (7829), 385-+.
[97] Lee, K. H.; Han, C. Y.; Kang, H. D.; Ko, H.; Lee, C.; Lee, J.; Myoung, N.; Yim, S. Y.; Yang, H., Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. ACS Nano 2015, 9 (11), 10941-10949.
[98] Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H., Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices. ACS Nano 2013, 7 (8), 7295-7302.
[99] Rhee, S.; Chang, J. H.; Hahm, D.; Jeong, B. G.; Kim, J.; Lee, H.; Lim, J.; Hwang, E.; Kwak, J.; Bae, W. K., Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano 2020, 14 (12), 17496-17504.
[100] Song, J. J.; Wang, O.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S., Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29 (33).
[101] Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat Photonics 2015, 9 (4), 259-266.
[102] Zhao, B.; Chen, L. X.; Liu, W. Y.; Wu, L. J.; Lu, Z. Z.; Cao, W. R., High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification. Rsc Adv 2021, 11 (23), 14047-14052.
[103] Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K.; Lee, S.; Lee, C., Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12 (5), 2362-2366.
[104] Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J., Bright and Stable Quantum Dot Light-Emitting Diodes. Adv. Mater. 2022, 34 (4).
[105] Liu, H. H.; Zou, J. H.; Zhu, X. W.; Li, X. H.; Ni, H. Z.; Liu, Y. Y.; Tao, H.; Xu, M.; Wang, L.; Peng, J. B., Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots. Org Electron 2021, 99.
[106] Su, Q.; Sun, Y. Z.; Zhang, H.; Chen, S. M., Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes. Adv Sci 2018, 5 (10).
[107] Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J.; Liu, X. Y., Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. Acs Appl Mater Inter 2017, 9 (44), 38755-38760.
[108] Yang, Z. W.; Wu, Q. Q.; Lin, G. L.; Zhou, X. C.; Wu, W. J.; Yang, X. Y.; Zhang, J. H.; Li, W. W., All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater Horizons 2019, 6 (10), 2009-2015.
[109] Li, D. Y.; Bai, J. K.; Zhang, T. T.; Chang, C.; Jin, X.; Huang, Z.; Xu, B.; Li, Q. H., Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance. Chem. Commun. 2019, 55 (24), 3501-3504.
[110] Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. N.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S., Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. Acs Photonics 2018, 5 (3), 939-946.
[111] Moon, H.; Chae, H., Efficiency Enhancement of All-Solution-Processed Inverted-Structure Green Quantum Dot Light-Emitting Diodes Via Partial Ligand Exchange with Thiophenol Derivatives Having Negative Dipole Moment. Adv. Opt. Mater. 2020, 8 (1).
[112] Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M., Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13 (10), 11433-11442.
[113] Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575 (7784), 634-+.
[114] Yeom, J. E.; Shin, D. H.; Lampande, R.; Jung, Y. H.; Mude, N. N.; Park, J. H.; Kwon, J. H., Good Charge Balanced Inverted Red InP/ZnSe/ZnS-Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer. ACS Energy Lett. 2020, 5 (12), 3868-3875.
[115] Han, M. G.; Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E., InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer. ACS Energy Lett. 2021, 6 (4), 1577-1585.
[116] Mei, G. D.; Tan, Y. Z.; Sun, J. Y.; Wu, D.; Zhang, T. Q.; Liu, H. C.; Liu, P.; Sun, X. W.; Choy, W. C. H.; Wang, K., Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl. Phys. Lett. 2022, 120 (9).
[117] Kim, Y.; Ippen, C.; Greco, T.; Lee, J.; Oh, M. S.; Han, C. J.; Wedel, A.; Kim, J., Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes. Opt Mater Express 2014, 4 (7), 1436-1443.
[118] Jang, I.; Kim, J.; Park, C. J.; Ippen, C.; Greco, T.; Oh, M. S.; Lee, J.; Kim, W. K.; Wedel, A.; Han, C. J.; Park, S. K., Study of Ethanolamine Surface Treatment on the Metal-Oxide Electron Transport Layer in Inverted InP Quantum Dot Light-Emitting Diodes. Electron Mater Lett 2015, 11 (6), 1066-1071.
[119] Moon, H.; Lee, W.; Kim, J.; Lee, D.; Cha, S.; Shin, S.; Chae, H., Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 2019, 55 (88), 13299-13302.
[120] Kim, B. H.; Acharya, K. P.; Desireddy, A.; Titov, A.; Tang, E.; Zhang, X.; Ying, C.; Hyvonen, J.; Holloway, P., Charge Injection Control of Cadmium‐Free Quantum Dot Light‐Emitting Diodes. SID Symposium Digest of Technical Papers 2020, 51 (1), 746-749.
[121] Lee, T.; Hahm, D.; Kim, K.; Bae, W. K.; Lee, C.; Kwak, J., Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer. Small 2019, 15 (50).
[122] Shen, H. B.; Cao, W. R.; Shewmon, N. T.; Yang, C. C.; Li, L. S.; Xue, J. G., High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes. Nano Lett. 2015, 15 (2), 1211-1216.
[123] Su, Q.; Zhang, H.; Chen, S. M., Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117 (5).
[124] Narendran, N.; Gu, Y. M., Life of LED-Based White Light Sources. J Disp Technol 2005, 1 (1), 167-171.
[125] Narendran, N.; Gu, Y.; Freyssinier, J. P.; Yu, H.; Deng, L., Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 2004, 268 (3-4), 449-456.
[126] Xie, B.; Liu, H. C.; Hu, R.; Wang, C. F.; Hao, J. J.; Wang, K.; Luo, X. B., Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Adv. Funct. Mater. 2018, 28 (30).
[127] Neamen, D. A., Semiconductor physics and devices: basic principles. McGraw-hill: 2003.
[128] Kasap, S. O., Optoelectronics & Photonics: Principles & Practices. 2nd Edition ed.; Pearson: 2013.
[129] https://www.hamamatsu.com/eu/en/product/photometry-systems/luminescenceefficiency-measurement-system/quantaurus-qy/C11347-11.html.
[130] Vernon-Parry, K. III-Vs Review; 2000; pp 40-44.
[131] Egerton, R. F., Physical principles of electron microscopy. Springer: 2005; Vol. 56.
[132] Williams, D. B. C., C. B., The transmission electron microscope. In Transmission electron microscopy. Springer 1996, 3-17.
[133] Giessibl, F. J., Reviews of modern physics. 2003; Vol. 75 (3).
[134] Schweizer, P. M. K., S., Liquid Film Coating: Scientific principles and their technological implications. Springer Science & Business Media: 2012.
[135] Luttge, R., Microfabrication for industrial applications. William Andrew: 2011.
[136] Grèzes-Besset, C. C., G.; Pinard, L., Optical coatings for large facilities. In Optical Thin Films and Coatings. Elsevier: 2018.
[137] Balasubramanian, G. R., R. P., Review of Scientific Instruments. 1981; Vol. 52 (5).
[138] Shrotriya, V. Y., Y. , Journal of Applied Physics. 2005; Vol. 97 (5).
[139] Shrotriya, V.; Yang, Y., Capacitance-voltage characterization of polymer light-emitting diodes. J Appl Phys 2005, 97 (5).
[140] Garcia-Belmonte, G.; Bolink, H. J.; Bisquert, J., Capacitance-voltage characteristics of organic light-emitting diodes varying the cathode metal: Implications for interfacial states. Phys. Rev. B 2007, 75 (8).
[141] Zhang, L.; Nakanotani, H.; Adachi, C., Capacitance-voltage characteristics of a 4,4 '-bis[(N-carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Appl. Phys. Lett. 2013, 103 (9).
[142] Campbell, I. H.; Smith, D. L.; Ferraris, J. P., Electrical-Impedance Measurements of Polymer Light-Emitting-Diodes. Appl. Phys. Lett. 1995, 66 (22), 3030-3032.
[143] Zhang, H.; Hu, N.; Zeng, Z. P.; Lin, Q. L.; Zhang, F. J.; Tang, A. W.; Jia, Y.; Li, L. S.; Shen, H. B.; Teng, F.; Du, Z. L., High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. Adv. Opt. Mater. 2019, 7 (7).
[144] Lee, M. H.; Choi, W. H.; Zhu, F. R., Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes. Opt Express 2016, 24 (6), A592-A603.
[145] Kwon, Y.; Kim, Y.; Lee, H.; Lee, C.; Kwak, J., Composite film of poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes. Org Electron 2014, 15 (6), 1083-1087.
[146] Lee, M. H.; Chen, L. X.; Li, N.; Zhu, F. R., MoO3-induced oxidation doping of PEDOT:PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes. J Mater Chem C 2017, 5 (40), 10555-10561.
[147] H. J. Wang, Z. G. L., Q. M. Dong, D. Zhang, and R. Han, Performance of organic light emitting diodes with MoO3 and PEDOT:PSS as double hole injection layers. In 19th International Conference on Optical Communications and Networks (ICOCN), 2021.
[148] Zhu, L. Z.; Richardson, B. J.; Yu, Q. M., Inverted hybrid CdSe-polymer solar cells adopting PEDOT:PSS/MoO3 as dual hole transport layers. Phys Chem Chem Phys 2016, 18 (5), 3463-3471.
[149] Guo, S. H.; Wu, Q. Q.; Wang, L.; Cao, F.; Dou, Y. J.; Wang, Y. M.; Sun, Z. J.; Zhang, C. X.; Yang, X. Y., Boosting Efficiency of InP Quantum Dots-Based Light-Emitting Diodes by an In-Doped ZnO Electron Transport Layer. IEEE Electron Device Lett. 2021, 42 (12), 1806-1809.
[150] Li, X. Y.; Lin, Q. L.; Song, J. J.; Shen, H. B.; Zhang, H. M.; Li, L. S.; Li, X. G.; Du, Z. L., Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Adv. Opt. Mater. 2020, 8 (2).
[151] Motomura, G.; Ogura, K.; Iwasaki, Y.; Nagakubo, J.; Hirakawa, M.; Nishihashi, T.; Tsuzuki, T., Improvement of electroluminescent characteristics in quantum dot light-emitting diodes using ZnInP/ZnSe/ZnS quantum dots by mixing an electron transport material into the light-emitting layer. Aip Adv 2020, 10 (6).
[152] Iwasaki, Y.; Motomura, G.; Ogura, K.; Tsuzuki, T., Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 2020, 117 (11).
[153] Yuan, Q. L.; Wang, T.; Wang, R.; Zhao, J. L.; Zhang, H. Z.; Ji, W. Y., Exploring the emission mechanism of dichromatic white-light quantum-dot light-emitting diodes using wavelength-resolved transient electroluminescence analysis. Opt. Lett. 2020, 45 (23), 6370-6373.
[154] Lv, S. H.; Yang, K. Y.; Wu, C. X.; Wang, K.; Chen, R.; Chen, X.; Ju, S. M.; Luo, Z. Q.; Zhao, H. B.; Guo, T. L.; Li, F. S., Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Lett. 2022, 43 (2), 256-259.
[155] Wang, F. H.; Sun, W. D.; Liu, P.; Wang, Z. B.; Zhang, J.; Wei, J. L.; Li, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. A., Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes through Transport Layer Doping Strategies. J Phys Chem Lett 2019, 10 (5), 960-965.
[156] X. T. Xiao, K. W., T. K. Ye, R. Cai, Z. W. Ren, D. Wu, X. W. Qu, J. Y. Sun, S. H. Ding, X. W. Sun, and W. C. H. Choy, Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Commun. Mater. 2020, 1 (1).
[157] Mark, P.; Helfrich, W., Space-Charge-Limited Currents in Organic Crystals. J Appl Phys 1962, 33 (1), 205-&.
[158] Lampert, M. A., Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys Rev 1956, 103 (6), 1648-1656.
[159] Kim, S. K.; Kim, Y. S., Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers. J Appl Phys 2019, 126 (3).
[160] Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W., Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv. Mater. 2012, 24 (30), 4180-4185.
[161] Yang, X. Y.; Divayana, Y.; Zhao, D. W.; Leck, K. S.; Lu, F.; Tan, S. T.; Abiyasa, A. P.; Zhao, Y. B.; Demir, H. V.; Sun, X. W., A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Appl. Phys. Lett. 2012, 101 (23).
[162] Jo, J. H.; Kim, J. H.; Lee, K. H.; Han, C. Y.; Jang, E. P.; Do, Y. R.; Yang, H., High-efficiency red electroluminescent device based on multishelled InP quantum dots. Opt. Lett. 2016, 41 (17), 3984-3987.
[163] Jang, I.; Kim, J.; Ippen, C.; Greco, T.; Oh, M. S.; Lee, J.; Kim, W. K.; Wedel, A.; Han, C. J.; Park, S. K., Inverted InP quantum dot light-emitting diodes using low-temperature solution-processed metal-oxide as an electron transport. Jpn. J. Appl. Phys. 2015, 54 (2).
[164] Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R. H.; Peng, X.; Jin, Y., Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11 (1).
[165] Cao, F.; Wang, S.; Wang, F. J.; Wu, Q. Q.; Zhao, D. W.; Yang, X. Y., A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chem. Mat. 2018, 30 (21), 8002-8007.
[166] Ouyang, J., "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34 (5), 423-436.
[167] Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21 (6), 1076-1081.
[168] Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S., Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13 (7), 8229-8236.
[169] Cho, H.; Kang, D.; Lee, Y.; Bae, H.; Hong, S.; Cho, Y.; Kim, K.; Yi, Y.; Park, J. H.; Im, S., Dramatic Reduction of Contact Resistance via Ultrathin LiF in Two-Dimensional MoS2 Field Effect Transistors. Nano Lett. 2021, 21 (8), 3503-3510.
[170] Chiu, P. C.; Yang, S. H., Improvement in hole transporting ability and device performance of quantum dot light emitting diodes. Nanoscale Advances 2020, 2 (1), 401-407.
[171] Wu, Z. X.; Wang, L. D.; Wang, H. F.; Gao, Y. D.; Qiu, Y., Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film. Phys. Rev. B 2006, 74 (16).
[172] Muller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H., Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 2004, 85 (3), 381-383.
[173] Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H., Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31 (34).
[174] Pechstedt, K.; Whittle, T.; Baumberg, J.; Melvin, T., Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. J Phys Chem C 2010, 114 (28), 12069-12077.
[175] Wei, Y.; Cheng, Z. Y.; Lin, J., An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs (vol 48, pg 310, 2019). Chem Soc Rev 2019, 48 (1), 405-405.
[176] Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N.; Zeng, H. B., 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29 (5).
[177] Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G., Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28 (32), 6804-6834.
[178] Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M.; Zhang, L. J.; Sun, C.; Zhao, D.; Qin, G. S.; Bai, X.; Yu, W. W.; Rogach, A. L., Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Lett. 2019, 19 (3), 1552-1559.
[179] Jones, M.; Lo, S. S.; Scholes, G. D., Signatures of Exciton Dynamics and Carrier Trapping in the Time-Resolved Photoluminescence of Colloidal CdSe Nanocrystals. J Phys Chem C 2009, 113 (43), 18632-18642.
[180] Cai, X. C.; Martin, J. E.; Shea-Rohwer, L. E.; Gong, K.; Kelley, D. F., Thermal Quenching Mechanisms in II-VI Semiconductor Nanocrystals. J Phys Chem C 2013, 117 (15), 7902-7913.
[181] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G., Quantum-dot optical temperature probes. Appl. Phys. Lett. 2003, 83 (17), 3555-3557.
[182] Liu, T. C.; Huang, Z. L.; Wang, H. Q.; Wang, J. H.; Li, X. Q.; Zhao, Y. D.; Luo, Q. M., Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe. Anal Chim Acta 2006, 559 (1), 120-123.
[183] Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 2015, 3 (15), 8139-8147.
[184] Adachi, M. M.; Fan, F. J.; Sellan, D. P.; Hoogland, S.; Voznyy, O.; Houtepen, A. J.; Parrish, K. D.; Kanjanaboos, P.; Malen, J. A.; Sargent, E. H., Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 2015, 6.
[185] Qiu, L.; Hao, J. R.; Feng, Y. X.; Qu, X. Y.; Li, G. G.; Wei, Y.; Xing, G. C.; Wang, H. Q.; Yan, C. J.; Lin, J., One-pot in situ synthesis of CsPbX3@h-BN (X = Cl, Br, I) nanosheet composites with superior thermal stability for white LEDs. J Mater Chem C 2019, 7 (14), 4038-4042.
[186] Xie, B.; Cheng, Y. H.; Hao, J. J.; Yu, X. J.; Shu, W. C.; Wang, K.; Luo, X. B., White Light-Emitting Diodes With Enhanced Efficiency and Thermal Stability Optimized by Quantum Dots-Silica Nanoparticles. Ieee T Electron Dev 2018, 65 (2), 605-609.
[187] Yang, D. D.; Xie, Y. Y.; Geng, C.; Shen, C. Y.; Liu, J. G.; Sun, M. Z.; Li, S. S.; Bi, W. G.; Xu, S., Thermal Analysis and Performance Optimization of Quantum Dots in LEDs by Microsphere Model. Ieee T Electron Dev 2019, 66 (9), 3903-3909.
[188] Zou, H. Y.; Liu, M.; Zhou, D.; Zhang, X.; Liu, Y.; Yang, B.; Zhang, H., Employing CdSexTe1-x, Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes. J Phys Chem C 2017, 121 (9), 5313-5323.
[189] Wang, L.; Meng, L. H.; Chen, L.; Huang, S.; Wu, X. G.; Dai, G.; Deng, L. G.; Han, J. B.; Zou, B. S.; Zhang, C. F.; Zhong, H. Z., Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. J Phys Chem Lett 2019, 10 (12), 3248-3253.
[190] Li, Y.; Hou, X.Q.; Dai, X.L.; Yao, Z.L.; Lv, L.L.; Jin, Y.Z.; Peng, X.G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.
修改评论